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ABSTRACT
Case management models are business process models that
allow a great degree of flexibility at runtime by design. In
contrast to flow-driven business processes (e.g., BPMN, EPC,
UML activity diagrams), case management models primar-
ily describe a business process by tasks, goals (i.e., mile-
stones), stages, and dependencies between them. However,
flow-driven processes are still often required and relevant in
practice. In the recent case management standard CMMN
(Case Management Model and Notation), support for pro-
cess flows is offered by referencing BPMN processes. This re-
sults in a conceptual break between case elements and those
in such subprocesses, so that dependencies from and to el-
ements contained in flow-driven processes are unsupported.
Moreover, case designers and other involved stakeholders
are required to have substantial knowledge of not only case
modeling but also of flow-driven business process modeling,
which makes it overly complex. To counteract these current
limitations, this paper proposes a lightweight and seamless
integration of process flows in case management modeling
as a first class citizen. Just a single new element, the Flow
Dependency, in combination with existing case elements, en-
ables support for fully integrated process flows in case mod-
els. Although the approach is that lightweight, an evalu-
ation based on workflow patterns shows its high degree of
expressiveness.
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1. INTRODUCTION
Nowadays, case management is the business process man-
agement solution of choice of many software vendors [4]. Al-
though vendors seem to often pursue proprietary solutions,
there exist fundamental common concepts such as goals and
dependencies (cf. [1]). There are also ongoing standard-
ization efforts by the Object Management Group (OMG),
which aim to cover those recurring fundamental concepts.
Their goal is to make case models interchangeable and rep-
resentable by common graphical notations. As a result, a
first version of the Case Management Model and Notation
(CMMN) [10] standard was released in 2014. The CMMN
standard includes many conceptual elements, such as stages
and dependencies, that make it distinct from flow-driven
business processes, such as BPMN [9]. However, since the
case management modeling elements are not specifically de-
signed for the modeling of flow-driven aspects of a case, the
CMMN standard still allows to reference flow-driven BPMN
subprocesses. Many of today’s case management solutions
seem to follow the same pattern.

One of the downsides of the current situation is the concep-
tual break in the presence of such flow-driven subprocesses
in case models. The elements of a BPMN subprocess are
isolated from all other elements of the case which are not
part of the same subprocess. As a result, it is impossible
to model dependencies to or from elements of the subpro-
cess, and it is not possible to use case modeling elements
inside of the subprocess because they are not part of the
BPMN standard. Trying to model process flows with ex-
isting case elements only is not a viable option as it might
result in complicated constructs (cf. [2]), and some behavior
cannot be modeled at all. For example, it is not possible to
model the synchronizing merge workflow pattern with case
management elements.

Moreover, to be able to model and understand flow-driven
aspects, a case designer or different kind of involved stake-
holder must be at home with both case modeling and the
modeling of flow-driven processes (e.g., BPMN). As a result
of combining case modeling and the modeling of flow-driven
business processes, the overall modeling complexity is dras-
tically increased (cf. [6]).

This paper proposes a lightweight approach for the seamless
modeling of flow-driven aspects in case management models.



Process flows are seamlessly integrated and its elements are
inter-operable with other case elements. The approach is
lightweight because merely a single additional element, the
Flow Dependency is introduced. Nevertheless, this single
new element has a huge impact on the execution seman-
tics of a case, and makes it possible to model various stan-
dard workflow patterns in non-complicated manner, as op-
posed to using the existing set of CMMN elements. Several
workflow patterns, like the synchronizing merge workflow
pattern, which cannot be described using pure CMMN, are
representable using our approach. The proposed approach
does not require gateways as it makes use of many exist-
ing case modeling elements instead. An evaluation of the
approach on basis of workflow patterns (cf. [14]) shows the
high degree of expressiveness of the proposed approach.

2. BACKGROUND: CASE MODELING
Before going into details of the proposed approach, we would
like to quickly introduce existing established case modeling
concepts. To be independent from vendor-specific propri-
etary notations, we adopt the CMMN standard as the foun-
dation of our approach. Figure 1 shows in (a) the shape of a
task, in (b) the shape of a goal (also called milestone). The
shape of the stage element is shown in Figure 1 (c). A stage
may contain tasks, goals, or other stages, so they can be used
for structuring a case, and it is possible to nest them. Fig-
ure 1 (d) shows the shape of a dependency, which symbolizes
a precedence constraint of a criterion (e.g., a task must be
completed before another task is allowed to be executed).
Figure 1 (e) shows the shape of an entry criterion, which
limits the access to a task, goal, or stage if it is attached to
it. A criterion consists in CMMN of if-parts and on-parts.
If-parts are rules expressed as boolean formulas that must
all be satisfied whereas on-parts are dependencies that must
all be satisfied in order to satisfy the criterion. Figure 1 (f)
shows the exit criterion shape. An exit criterion is evaluated
at the completion of a task, stage or goal.

(a) (b) (c)

(d) (e) (f)

Figure 1: Case element notations in CMMN: (a)
Task shape, (b) Goal/milestone shape, (c) Stage
shape, (d) Dependency shape, (e) Entry criterion
shape, and (f) Exit criterion shape

3. MOTIVATIONAL EXAMPLE
A situation demanding a synchronizing merge is caused by
one or more multiple choice decisions, and the merge must
wait for one or more incoming paths, dependent on the de-
cisions made. That is, it is generally unknown at design
time of the model, how many incoming paths there will be
at runtime. Figure 2 shows this scenario modeled in BPMN
and the same multiple choice in CMMN, but there exists no
possible way for modeling a synchronizing merge in CMMN.

Moreover, there is no guarantee that the conditions of the
entry criteria (diamond shapes) of B, C and D are only eval-
uated at the time of completion of A, so they can become
satisfied at a later time. Clearly, this contradicts the behav-
ior that is usually expected from process flows.
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Figure 2: Synchronizing merge not representable
in CMMN: (a) Multiple choice and synchronizing
merge in BPMN, and (b) Multiple choice in CMMN

4. APPROACH
For enabling the integrated modeling of flow-driven aspects
in case models, we propose a new kind of dependency, the
Flow Dependency. Figure 3 shows the shape of this new
concept, and the subsequent sections will introduce its se-
mantics.

Figure 3: Flow dependency shape

4.1 Non-Branching Flows
Figure 4 shows the usage of this new connector to define
flow dependencies between tasks, stages and goals (i.e., mile-
stones). In those usage scenarios (which are not intended to
be exhaustive), the completion of a case element from which
the dotted arrow originates causes the automatic enabling or
activation of the subsequent case element. Flow dependen-
cies demand the eventual activation of subsequent elements,
so if in (a) Task 1 is completed, the flow dependency acti-
vates Task 2. As long as Task 2 is not complete, the parent
element of it, in which it is contained, namely its stage, can-
not be completed. By this, it is guaranteed that the flow is
not interrupted prematurely.

Entry and exit criteria can be used as guard conditions in
conjunction with flow dependencies. In contrast to classical
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Figure 4: Example usage scenarios for flow depen-
dencies between tasks, stages and goals (i.e., mile-
stones)

flow-driven languages, such as BPMN, that usually define
guard conditions on transitions (i.e., sequence flows), our
approach does not allow to define guard conditions on flow
dependencies. Instead, it makes use of the existing notions
of exit and entry criteria. Figure 5 shows usage scenarios
of flow dependencies with criteria. In Figure 5 (a), Task 2

has an entry criterion, which guards the access to it. At
the moment Task 1 completes, the condition of this entry
criterion is evaluated either to true or false, depending on
the current state of the involved data attributes of the con-
dition. If the condition is evaluated to false, then Task 2

cannot be reached in this scenario. That is, the guard con-
dition prevents its enabling. On the other hand, if the condi-
tion is evaluated to true, then Task 2 is activated and must
reach a terminal state eventually. In Figure 5 (b), Stage

1 has an exit criterion with a flow dependency to Stage 2.
The exit criterion is evaluated at the completion of Stage

1, and in case of a positive evaluation, Stage 2 becomes ac-
tive. Again, if a case element has been enabled or activated
by a flow dependency, it must eventually be completed or
reach another terminal state. In Figure 5 (c), there is a
flow dependency from an exit criterion to an entry criterion.
First, the exit criterion of Task is evaluated. If its condition
turns out to be false, the flow dependency is not triggered,
otherwise it leads to the evaluation of the entry criterion
of Stage, which leads to the activation of that stage if the
condition is evaluated to true.
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Figure 5: Example usage scenarios for sequential
dependencies in conjunction with criteria

4.2 Branching Flows
In this section, we discuss the branching behavior of pro-
cess flows that are formed by flow dependencies. Especially
the merging behavior is of interest, as already outlined in
the motivation of our work (cf. Section 3). For example,

BPMN defines different kinds of gateways, like parallel, ex-
clusive and inclusive gateways. In the proposed approach,
process flows are modeled without any explicitly defined
gateway, but splitting and merging behavior can be mod-
eled even without introducing gateways. Avoiding gateways
is a design decision of our approach to keep it as lightweight
as possible. In particular, the number of introduced new
modeling elements is kept minimal (i.e., only the flow de-
pendency connector is introduced).

Figure 6 contains a process flow created by flow dependen-
cies which is semantically equal to the BPMN process in
Figure 5 (a). The execution of A is mandatory (indicated
by the exclamation mark). With the start of A, the flow-
driven process starts. At the completion of A, all outgoing
flow dependencies become satisfied. Depending on the state
of the data attributes a and b at the completion of A, ei-
ther all or subsets of the task set {B, C, D} become activated
because of their incoming flow dependencies. If none of the
entry criteria of B, C and D has been evaluated to true, then
the process flow ends. Otherwise, Task E will be activated
eventually. The behavior of the three incoming flow depen-
dencies to E is as if there was an inclusive gateway (i.e., a
synchronizing merge) in between them and the task. That
is, E becomes activated once at least one incoming flow de-
pendency is satisfied and the later satisfaction of at the same
time unsatisfied incoming flow dependencies is not possible
(due to the lack of upstream activity that would be required
to satisfy the dependency eventually).
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Figure 6: Branching flow scenario

Figure 7 shows different scenarios for merging incoming flows.
Figure 7 (a) shows three incoming flows to the entry criterion
of Task 1. This entry criterion is evaluated once at least one
flow dependency is satisfied and there is no upstream activ-
ity that might lead to the satisfaction of the unsatisfied ones
in the future. At that time, the entry criterion is evaluated
either to true or false, and Task 1 can only be started if the
entry criterion has turned out to be true. Figure 7 (b) is an
extended version of (a) that has three additional flow depen-
dencies directly incoming to the task. In this case, Task 2

is activated once the same as in (a) holds and at least one of
the three incoming flow dependencies directly to Task 2 is
satisfied and there is no upstream activity that might lead to
the satisfaction of the unsatisfied ones in the future. In the
presence of multiple entry criteria, like in Figure 7 (c), the
positive evaluation of one of the entry criteria activates Task
3. In Figure 7 (d), one of the entry criteria can activate the
task, once the flow dependencies that are directly incoming
to Task 4 are satisfied sufficiently, as already discussed for
Figure 7 (b).
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Figure 7: Merging scenarios

4.3 Completion of Stages
Additionally to the existing requirements for stage comple-
tion (no active elements, all required elements in terminal
state - cf. [10]), we define an additional requirement to pre-
vent the premature termination of process flows: If there is
any contained task or stage of a stage s enabled or active
that is part of a flow dependency structure (i.e., having an
incoming or outgoing flow dependency, or having an entry
criterion with an incoming flow dependency, or having an
exit criterion with an outgoing flow dependency) or a flow
dependency of a stage s is satisfied, then the stage s may
not complete.

4.4 Ordinary Dependencies
Ordinary dependencies (i.e., dependencies that are not flow
dependencies) can be combined with flow dependencies. Fig-
ure 8 shows two scenarios in which dependencies and flow
dependencies are used at the same time. In Figure 8 (a), the
dependency is directly attached to an entry criterion with
three incoming flow dependencies. The only possible way
to activate Task 1 is given by satisfying the entry criterion.
The entry criterion is evaluated once (1) at least one incom-
ing flow dependency is satisfied and there is no upstream
activity that might lead to the satisfaction of the unsatis-
fied ones in the future, and (2) all incoming dependencies
to the entry criterion are satisfied. Figure 8 (b) shows Task

2 with three incoming flow dependencies, and an entry cri-
terion with three incoming flow dependencies and two or-
dinary dependencies. This is an extension of the example
in Figure 7 (b). In addition to that scenario, at least one
incoming flow dependency to the task must be satisfied and
there must not be any upstream activity on yet unsatisfied
incoming flow dependencies.
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Figure 8: Scenarios with dependencies

4.5 Ordinary Entry and Exit Criteria
Entry and exit criteria do not necessarily need to be asso-
ciated with a flow dependency. An entry criterion without
any incoming flow dependency functions as an entry point
to the flow. For example, it might make sense to use entry
criteria to limit the access to tasks and stages at the begin
of the process flow. An exit criterion without any outgo-
ing flow dependency may be used to notify a task or stage
outside of the flow through an ordinary dependency.

4.6 Cycles
Some situations might require the introduction of cycles.
Dependent elements (i.e., elements that have an ordinary
dependency defined on an element of the process flow) are
not automatically instantiated multiple times by this looping
behavior. Figure 9 shows a four tasks. Tasks A, B, C are part
of a process flow, and D is just dependent on C. There is
a cycle that leads to the creation of a new instance of B

after the completion of C if the entry criterion attached at
the bottom of B is satisfied. If the entry criterion of D is
met at the first completion of C, then D becomes activated.
Further loop iterations will not affect D or its entry criterion
anymore. However, if the entry criterion of D is not satisfied
in the first iteration of the loop, then it will be continuously
reevaluated. An exception of this behavior is given if D is
decorated as repeatable (by the ‘#’ symbol). In that case,
the ordinary repetition behavior of CMMN is effective, and
D may be instantiated multiple times.

DB CA

Figure 9: Process with a loop formed by flow depen-
dencies (B, C) and an ordinary dependency (entry
criterion of D is dependent on C)

5. FORMALIZATION
A case model with flow dependencies MF is a tuple T , G,
S, E , X , C, R, V, D, DF , ζE , ζX , δ, κreq, κrep, Hreq, Hrep,
κC , AM, σAM, CM, σCM, where

• T is a set of tasks, G is a set of goals (i.e., milestones),
S is a set of stages, E is a set of entry criteria, X is a
set of exit criteria, C = E ∪ X is a set of criteria, R is
a set of rules, V is a set of event listeners,

• D is a set of dependencies,

• DF is a set of flow dependencies,

• ζE : E 7→ T ∪ G ∪ S is a total non-injective function
which maps an entry criterion to a task, goal, or stage,

• ζX : X 7→ T ∪S is a total non-injective function which
maps an exit criterion to a task or stage,

• δ : T ∪ G ∪ S 7→ S is a partial non-injective function
which maps a task, goal, or stage to a parent stage,

• κreq : T ∪ S 7→ R is a total function which maps a
task, goal, or stage to a required rule,

• κrep : T ∪ S 7→ R is a total function which maps a
task, goal, or stage to a repetition rule,

• Hreq : R 7→ {true, false} is a total non-injective sur-
jective function which preserves the evaluation of a
required rule,



• Hrep : R 7→ {true, false} is a total non-injective sur-
jective function which preserves the evaluation of a
repetition rule,

• κC : C 7→ R is a total function which maps a criterion
to a rule,

• AM = {automatic,manual} is a set of activation
modes for tasks and stages,

• σAM : T ∪S 7→ AM is a total non-injective surjective
function which maps a task or stage to an activation
mode.

• CM = {automatic,manual} is a set of completion
modes for stages,

• σCM : T ∪ S 7→ CM is a total non-injective surjective
function which maps a stage to a completion mode.

The function EvaluateRule(r ∈ R) evaluates a rule r to
either true or false, depending on the runtime states of
data at the time of invocation.

The function EvaluateIncomingF lowDependencies(e ∈ E∪
T ∪ S) (cf. Algorithm 1) returns true if there is at least one
incoming flow dependency satisfied and there is no upstream
activity for yet unsatisfied flow dependencies.

Algorithm 1 Evaluation of incoming flow dependencies

1: function EvaluateIncomingFlowDependencies(e ∈ E ∪ T ∪ S)
2: atLeastOneSatisfied := ∃d | d = (ds, dt) ∈ DF ∧ dt =

e (d.state = Satisfied)
3: noUpstreamActivity := true
4: for all d | d = (ds, dt) ∈ (DF \ d> | d> = (d>s , d

>
t ) ∈

DF ∧ d>t = e (d>.state = Satisfied)) ∧ dt = e do
5: if EvaluateUpstreamActivity(d) = true then .

cf. Algorithm 2
6: noUpstreamActivity := false
7: break
8: return atLeastOneSatisfied ∧ noUpstreamActivity

Algorithm 2 Evaluation of upstream activity

1: function EvaluateUpstreamActivity(d = (ds, dt) ∈ DF )
2: if d.state = Satisfied) then
3: return true
4: if ds ∈ T ∪ S ∧ (ds.state = Enabled ∨ ds.state = Active)

then
5: return true
6: if ζX (ds) ∈ T ∪S ∧ (ds.state = Enabled∨ds.state = Active)

then
7: return true
8: if ds ∈ G ∧ (ds.state = Completed) then
9: return true
10: for all dc | dc = (dcs, d

c
t) ∈ DF (dct = ds ∨ ζE(dct) = ds) do

11: if EvaluateUpstreamActivity(dc) = true then
12: return true
13: return false

A transition of a task or stage instance ts ∈ T ∪ S from
Available to Enabled (if σAM(ts) = manual) or from Avail-

able to Active (if σAM(ts) = automatic), or of a goal in-
stance g ∈ G from Available to Completed is performed iff
(∃d | d = (ds, dt) ∈ DF ∧ dt = ts) → EvaluateIncoming−
FlowDependencies(ts) = true, and either

• ∃e | e ∈ E ∧ ζE(ts) = e ∧ EvaluateRule(κC(e)) =
true ∧ (∀do | do = (dos, d

o
t ) ∈ D ∧ dot = e (d.state =

Satisfied)) ∧ ((∃df | df = (dfs , d
f
t ) ∈ DF ∧ dft = e)→

EvaluateIncomingF lowDependencies(e) = true), or

• @e | e ∈ E ∧ ζE(ts) = e.

Simply put, a task or stage becomes enabled (manual ac-
tivation) or active (automatic activation) if and only if at
least one incoming flow dependency is satisfied and there is
no upstream activity for the unsatisfied incoming flow de-
pendencies (if there exist flow dependencies directly to it),
and at least one entry criterion is satisfied (if it has any).
A goal completes if and only if all incoming flow dependen-
cies are satisfied and at least one entry criterion (also called
completion criterion) is satisfied (if it has any).

A stage instance s ∈ S may undergo a manual completion
when σCM(s) = manual or undergoes an automated com-
pletion when σCM(s) = automatic (transition from Active

to Completed) iff all of the following holds:

• @ts | ts ∈ T ∪ S ∧ δ(tg) = s ∧ ts.state = Active,

• ∀tgs | tgs ∈ T ∪G ∪S ∧ δ(tgs) = s∧Hreq(κreq(tgs)) =
true (tgs.state ∈ {Disabled, Completed, Terminated,
Failed}),

• @ts | ts ∈ T ∪ S ∧ δ(tgs) = s ∧ (∃d | d = (ds, dt) ∈
DF ∧ (dt = ts ∨ ζE(dt) = ts ∨ ds = ts ∨ ζX (ds) =
ts)) ∧ tgs.state = Enabled, and

• @d | d ∈ DF ∧ d.state = Satisfied.

That is, there must not be any active elements, all required
tasks/stages/goals must be in a terminal state, there must
not be any enabled tasks/stages that are part of a flow, and
all flow dependencies must have been consumed (there must
not be any satisfied flow dependencies).

A satisfied flow dependency instance d | d = (ds, dt) ∈
DF ∧ d.state = Satisfied is said to be consumed (d.state
= Consumed) iff dt ∈ T ∪ S and dt undergoes a transition
from Available to Enabled or Active, or dt ∈ G and dt un-
dergoes a transition from Available to Completed, or dt ∈
E∧EvaluateRule(κC(dt)) = true∧(∀do | do = (dos, d

o
t ) ∈ D∧

dot = dt (d.state = Satisfied))∧EvaluateIncomingF low−
Dependencies(dt) = true and one of the following holds:

• ζE(dt) ∈ T ∪ S and dt undergoes a transition from
Available to Enabled or Active, or

• ζE(dt) ∈ G and dt undergoes a transition from Avail-

able to Completed,

or dt ∈ E ∧ EvaluateRule(κC(dt)) = false ∧ (∀do | do =
(dos, d

o
t ) ∈ D∧dot = dt (d.state = Satisfied))∧EvaluateIn−

comingF lowDependencies(dt) = true.

In other words, a flow dependency instance is consumed if
and only if it takes an active part in the enabling/activation
of a task/stage or the completion of a goal, or the rule of
the associated criterion is negatively evaluated at the point
in time where all dependencies and at least one flow depen-
dency have arrived and there is no upstream activity.

For repetitions introduced by loops, the notion of CMMN’s
repetition rule (cf. [10]) is used, which may result in the



creation of additional instances. This happens implicitly for
∀e | e ∈ T ∪G∪S (∃d | d = (ds, dt) ∈ DF∧(dt = e∨ζE(dt) =
e∨ds = e∨ ζX (ds) = e)) (i.e., for all tasks, goals, and stages
that are in a flow), so that κrep(e) = true. It is not required
to specify the repetition decorator explicitly.

6. EVALUATION OF EXPRESSIVENESS
This section evaluates the expressiveness of the approach on
the basis of workflow patterns [14], which are a comprehen-
sive collection of flow-driven business process functionality.

Table 1 lists all workflow patterns, and whether the pattern
can be realized by the proposed approach. Moreover, it con-
tains the degree of support that is currently provided by the
CMMN standard. The improvements achieved by our ap-
proach are highlighted in boldface. Pattern 01 (Sequence)
is supported by the flow dependency connector that can be
used to activate (or enable) a case element (e.g., task) after
the completion of another in our approach. A sequence can
also be realized in CMMN, but in contrast to our approach
it requires the use of two modeling elements, namely an or-
dinary dependency in combination with an entry criterion.
Pattern 02 (Parallel Split) can be realized by multiple out-
going flow dependencies, and Pattern 03 (Synchronization)
by multiple incoming flow dependencies. Similarly to Pat-
tern 01 (Sequence), in CMMN, the realization of these pat-
terns requires the combination of entry criteria and ordinary
dependencies. It is possible to model Pattern 04 (Exclusive
Choice) if the conditions of involved criteria can only be sat-
isfied one at a time. It is impossible to model this behavior
in CMMN since the rules in criteria may become true at
a later time. That is, it is impossible in CMMN to guar-
antee an XOR decision. As a result, Pattern 05 (Simple
Merge) cannot be realized in CMMN because the pattern’s
assumption that none of the alternative branches is ever ex-
ecuted in parallel does not hold. Whether a merge in our
approach is a Pattern 05 (Simple Merge) depends on the
applied splitting behavior, so if the splitting behavior is an
exclusive choice, then the merging behavior will be a simple
merge. In contrast to Pattern 04 (Exclusive Choice), Pat-
tern 06 (Multi-Choice) enables the satisfaction of conditions
of several involved criteria at once. If this kind of splitting
behavior is applied, then the merging behavior will be Pat-
tern 07 (Synchronizing Merge). A multi-choice (OR-split)
can be realized in CMMN as well, but, as already discussed
for Pattern 04 (Exclusive Choice), rules of involved criteria
can become true at a later time. This seems to contradict
the pattern, which assumes the immediate evaluation. As
already discussed in the motivating example, a synchroniz-
ing merge cannot be realized in CMMN. Pattern 08 (Multi-
Merge) has no synchronization, so every incoming flow de-
pendency may lead to the activation or enabling of a case
element. This behavior can be realized by multiple entry cri-
teria, each having just a single incoming flow dependency.
In CMMN, the pattern can be realized by multiple entry
criteria, each having just a single ordinary incoming depen-
dency, and the case element must have a positively evaluated
repetition rule (i.e., it must be repeatable). Pattern 09 (Dis-
criminator) is not supported by the proposed approach. A
discriminator is activated once an incoming edge is triggered,
thereafter it blocks further activations until it resets when

everything expected has arrived. Supporting the modeling
of such a behavior would require the introduction of an ad-
ditional modeling element. Pattern 10 (Arbitrary Cycles)
can be modeled using both CMMN and the proposed ap-
proach. Pattern 10 (Implicit Termination) is both supported
by CMMN and our approach by the automated completion
of stages.

Patterns 12-15 are concerned with multiple instances. The
support for these pattern requires meta-data, more specifi-
cally the number of activations and completions of case el-
ements, which must be provided by the specific implemen-
tation. Consequently, the support is implementation de-
pendent. Figure 10 contains realization examples for those
patterns. In Figure 10 (a), Pattern 12 (Multiple Instances
Without Synchronization) is realized. Task 3 is started mul-
tiple times (depending on the data attribute v), but a syn-
chronization of the created instances is not necessary. Fig-
ure 10 (b) models multiple instances with a priori design
time knowledge, so it is known already at design time, how
often a task will be instantiated at runtime (in this example
it is four times). Since the number of times is static, the
stage can complete automatically (indicated by the filled
rectangle icon). Figure 10 (c) shows the modeling of multi-
ple instances with a priori runtime knowledge that the task
must be instantiated v times. In contrast to Figure 10 (b),
the stage is not completed automatically because it is a pos-
sibility that the data attribute v is increased at any time,
and an automated termination might not result in the de-
sired behavior. In Figure 10 (d), multiple instances can be
created, but the number of instances is not known, so the
user can create instances as desired (Pattern 15: Multiple
Instances Without a Priori Runtime Knowledge). There is
however still a synchronization of the create instances nec-
essary before the flow can continue.

Figure 11 shows a realization attempt for Pattern 16 (De-
ferred Choice). There is a deferred choice between B and
C, triggered by events. However, this choice is not exclu-
sive (XOR) as demanded by the description of the pattern
in [14]. Consequently, this pattern cannot be represented us-
ing our approach. Pattern 17 (Interleaved Parallel Routing)
requires the execution of a set of case elements in any order
and sequentially (one at a time). This kind of behavior can-
not be modeled using our approach at this time. However, it
is simple to extend the current approach by introducing an
additional decorator for stages that indicates that contain
elements must be executed one at a time. Pattern 18 (Mile-
stone) can be realized using a deferred choice, which cannot
be represented using our approach [14]. Canceling a case
and canceling activities (Patterns 19 & 20) are supported
by the stage instance state top-down propagation and by
state changes in the lifecycle of case elements (cf. [10]).

7. DISCUSSION
This paper proposes a novel approach for the modeling of
process flows in case management models. The approach
introduces a single new element, the so-called Flow Depen-
dency, to form process flows as first class citizens in case
models. An evaluation of the approach shows that it in-
creases the support of the fundamental workflow patterns
discussed in [14] from 60% to 80%. Most importantly, essen-



Table 1: Evaluation of workflow pattern support

Workflow pattern Supported
by CMMN

Supported
by our

approach

01: Sequence fully fully

02: Parallel Split fully fully

03: Synchronization fully fully

04: Exclusive Choice no fully

05: Simple Merge no fully

06: Multi-Choice limited fully

07: Synchronizing Merge no fully

08: Multi-Merge fully fully

09: Discriminator no no

10: Arbitrary Cycles fully fully

11: Implicit Termination fully fully

12: Multiple Instances
Without Synchronization

implementation
dependent

implementation
dependent

13: Multiple Instances
With a Priori Design
Time Knowledge

implementation
dependent

implementation
dependent

14: Multiple Instances
With a Priori Runtime
Knowledge

implementation
dependent

implementation
dependent

15: Multiple Instances
Without a Priori Run-
time Knowledge

implementation
dependent

implementation
dependent

16: Deferred Choice no no

17: Interleaved Parallel
Routing

no no

18: Milestone no no

19: Cancel Activity fully fully

20: Cancel Case fully fully

tial patterns that have a high degree of practical relevance
(i.e., choice and merge) now become supported by our ap-
proach. To reach such a high percentage in workflow pattern
support is a surprisingly good result, when we consider that
merely a single new element is added to the already exist-
ing modeling elements of CMMN. To keep the approach as
lightweight as possible, no further modeling elements are in-
troduced. Naturally, additional modeling elements would
make a support for the yet unsupported workflow patterns
possible as well, so there is a trade-off between simplicity
and expressiveness. The current degree of expressiveness of
our approach might in many cases be sufficient, because usu-
ally merely a small subset of process modeling elements are
used in practice (cf. [8]). Consequently, the approach might
be suitable to supersede existing solutions that depend on
both case modeling (such as CMMN or similar proprietary
solution) and classical flow-driven business process modeling
solution (such as BPMN, UML activity diagrams, EPCs, ...)
in order to alleviate the overall modeling complexity (cf. [6]).
Please note that there also exists an extended pattern cata-
log [12]. In the evaluation we focus on the original catalog of
workflow patterns since the elements with the most practical
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Figure 11: Attempt to model a deferred choice

relevance are covered (cf. [8]).

Whether the dependency flow element and the formed pro-
cess flows are understood well by users must be further eval-
uated. It must be further investigated whether the intro-
duced dotted arrow shape can be distinguished sufficiently
from an ordinary dependency. The physics of notations
framework by Moody [7] may function as a starting point
for this investigation and for improvements. For example,
it might be useful to use color encodings to distinguish el-
ements that are part of a process flow from those that are
not. Such kinds of refinements of the approach are oppor-
tunities for future research. Moreover, experimental studies
with users may be used to evaluate the overall understand-
ability of the approach and to compare it against existing
flow-driven modeling approaches such as UML activity dia-



grams and BPMN.

An evaluation of potential modeling errors and resulting in-
consistencies is unfortunately out of scope of this paper. For
example, a user might arrange flow dependencies in a way
that creates an endless looping behavior. This inconsistency
would hinder the completion of a stage. We consider it as
important to enable the automated detection of such errors
in future work.

8. RELATED WORK
We are not aware of any existing approach that integrates
process flows in case management models in a similar way to
our approach. However, there exist approaches that combine
different business process modeling approaches. Wester-
gaard and Slaats [16] propose the combination of the declar-
ative workflow approaches Declare and DCR Graphs to in-
crease the overall expressiveness. Maggi et al. [5] propose
the automated discovery of hybrid process models that con-
sist of nested flow-driven and Declare models. Van der Aalst
et al. [13] propose the combination of different modeling ap-
proaches in a service-oriented architecture. De Giacomo et
al. [3] propose an extension of BPMN, called BPMN-D, for
the combination of declarative and procedural process mod-
els.

Another closely related approach is case handling [11, 15]. It
introduces three primitives, called execute (i.e., a task must
be performed), skip (i.e., a task can be performed, though
it is not mandatory), redo (i.e., a task can be repeated) and
precedence (i.e., some task must be executed before another
is allowed to happen), to allow for more flexibility during the
execution of a process. CMMN offers similar constructs (i.e.,
repetition rule, required rule, dependencies). Like CMMN,
case handling seems to have only limited support for merg-
ing behavior. The proposed approach alleviates this kind of
problem.

In a recent study, de Carvalho et al. [2] evaluate the expres-
siveness of CMMN with regards to workflow patterns. How-
ever, the proposed representation of some workflow patterns
seems to be inaccurate. For example, the exclusive choice
between Task B and Task C is modeled as follows: If Task
B is started, then the exit criterion of Task C is satisfied,
which is ought to terminate Task C if it is active at that
time. Obviously, this is not modeling the exclusive choice
pattern accurately because both tasks enter a state of exe-
cution. Clearly, this underpins the need for a better support
for the modeling of flow-driven aspects in case models, which
our approach is able to provide.

9. CONCLUSION & FUTURE WORK
This paper proposes a lightweight approach for enabling the
seamless modeling of process flows in case management mod-
els. Just a single new modeling element, the so-called Flow
Dependency enables a high degree of expressiveness for the
modeling of procedural workflows. In particular, 80% of all
workflow patterns that are discussed in [14] are supported
by the proposed approach. The further evaluation of the
approach, including potential improvements, as outline in
Section 7, as well as the identification of potential inconsis-

tencies, and finding a solution for the automated detection
of modeling errors are opportunities for future work.
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