
Supporting Structural Consistency Checking in
Adaptive Case Management

Christoph Czepa1, Huy Tran1, Uwe Zdun1, Stefanie Rinderle-Ma1,
Thanh Tran Thi Kim2, Erhard Weiss2, and Christoph Ruhsam2

1 Faculty of Computer Science, University of Vienna, Austria
{christoph.czepa,huy.tran,uwe.zdun,stefanie.rinderle-ma}@univie.ac.at

2 Isis Papyrus Europe AG, Maria Enzersdorf, Austria
{thanh.tran,erhard.weiss,christoph.ruhsam}@isis-papyrus.com

Abstract. Adaptive Case Management (ACM) enables knowledge workers to
collaboratively handle unforeseen circumstances by making ad hoc changes of
case instances at runtime. Therefore, it is crucial to ensure that various structural
elements of an ACM case, such as goals, subprocesses and so on, remain con-
sistent over time. To the best of our knowledge, no studies in the literature pro-
vide adequate support for structural consistency checking of ACM. In this paper,
we introduce a formal categorization of ACM’s structural features and potential
inconsistencies. Based on this categorization, we develop a novel approach for
structural consistency checking of ACM cases. Our approach, based on model
checking and graph algorithms, can detect a wide range of inconsistencies of
ACM’s structural elements. The evaluation of our approach shows reasonable
performance and scalability.

1 Introduction

Adaptive Case Management (ACM) is part of an emerging trend in the field of business
process management that is aiming at supporting highly flexible, knowledge-intensive
software systems [13]. A high degree of flexibility often comes at the cost of potential
errors or inconsistencies, subsequently hampering the executability of the processes. In
the context of ACM, new sources of inconsistencies occur when compared to flexible
process management technology (cf. e.g., [11]). For example, a new goal could be in
conflict with an existing goal or a new dependency among two tasks could make no
sense because of contradicting pre- and postconditions of the tasks. Structural consis-
tency checking focuses on revealing such internal inconsistencies and contradictions
inside the structure of a case.

In this paper, we propose a novel approach for supporting structural consistency
checking of ACM systems. First, we study existing ACM systems and relevant indus-
trial standards and introduce a formal categorization of ACM’s structural features and
potential inconsistencies. Based on this categorization, we developed checking tech-
niques that can discover a wide range of inconsistencies of ACM cases. Our prototype
shows reasonable performance and scalability, so the proposed approach is appropriate
for both runtime and design time checking.

2 ACM Structural Concepts and Possible Inconsistencies

In this section, we identify ACM’s structural concepts and which inconsistencies can
possibly occur in these structures.

2.1 Formal Definition of ACM Case Models

Our identification of ACM’s structural concepts is based on a generalization of the
commercial ACM solution ISIS Papyrus3, the CMMN standard4, and the existing ACM
literature [6, 9, 14]. Based on this study we have derived a formal definition of a case
model.

Definition 1. A case modelM is a tuple (T ,G,S, E ,X , C,D, ζE , ζX , η, TF ,F , φ,J , δ,
sm) where

– T is a set of tasks, G is a set of goals, S is a set of stages, E is a set of entry criteria,
X is a set of exit criteria, C = E ∪ X is a set of criteria,

– D = DXE ∪ DX ∪ DE ∪ DSX ∪ DSE ∪ DN is a set of dependencies, where
• DXE (X × E is a set of dependencies from exit to entry criteria,
• DX (X × (T ∪ S) is a set of dependencies from exit criteria to tasks, and

stages,
• DE ((T ∪ G ∪ S) × E is a set of dependencies from tasks, goals, and stages

to entry criteria,
• DSX ((T ∪ G ∪ S ∪ X) × X is a set of dependencies from stage internal

tasks, stages, goals, and exit criteria to exit criteria of the stage.
• DSE (E × (T ∪ S ∪ E) is a set of dependencies from entry criteria of a stage

to stage internal tasks, stages, and entry criteria.
• DN ((T ∪ G ∪ S) × (T ∪ S) is a set of dependencies from tasks, goals and

stages to tasks and stages.
– ζE : E 7→ T ∪G ∪S is a total non-injective function which maps an entry criterion

to a task, goal, or stage,
– ζX : X 7→ T ∪ S is a total non-injective function which maps an exit criterion to a

task or stage,
– η : G 7→ G is a partial non-injective function which maps a goal to a parent goal
– TF (T is a set of process tasks, F is a set of subprocesses,
– φ : TF 7→ F is a total function which maps a process task to a subprocess,
– J = C ∪

⋃
p∈F p.B is the joint set of criteria and conditions of all subprocesses,

– δ : T ∪ G ∪ S 7→ S is a partial non-injective function which maps a task, goal, or
stage to a parent stage, and

– sm ∈ S is the main stage of the case (equivalent to a Case element in CMMN).

2.2 Possible Inconsistencies in ACM’s Structural Concepts

Dependencies among elements in ACM can be arranged to form loops. Table 1 shows
two kinds of loop-related inconsistencies in ACM. If the elements in a loop formed by

3 http://www.isis-papyrus.com
4 http://www.omg.org/spec/CMMN/1.0/PDF

http://www.isis-papyrus.com
http://www.omg.org/spec/CMMN/1.0/PDF

Table 1. Loop-Related Inconsistencies in ACM

Naming CMMN Example ISIS Papyrus Example
Inaccessible De-
pendency Loop

������ ������

Potential Endless
Loop

������ ������

Not possible (due to hierarchical or-
ganization of goals)

dependencies are generally inaccessible, then we call this kind of inconsistency Inac-
cessible Dependency Loop. In the given example in Table 1, Task 1 is dependent on
Task 2 and Task 2 is dependent on Task 1. Neither one is accessible due to this arrange-
ment. Another inconsistency related to loops is called Potential Endless Loop, and it is
found in parts of the model where loops do not include user interaction. In the example
in Table 1 there is a dependency from Goal 1 to Goal 2 and another dependency from
Goal 2 to Goal 1. Because of the lack of user interactions in between these goals, there
is a possibility that the case execution engine continuously reenters Goal 1 and Goal
2 until an action independent from this loop changes data states in a way to eventually
break the loop.

Pre- and postconditions of tasks, completion criteria of goals, and dependencies
among case elements are important and recurring mechanisms in ACM that guard the
access to certain elements of a case, dependent on the case’s data state. Table 2 sum-
marizes inconsistencies in ACM definitions that are related to guarding constraints.
If we observe just a single constraint, this isolated constraint must be inherently con-
sistent. A simple example for a Self-Contradictory Constraint is data.value == true

&& data.value != true because the logical and-connected parts of this constraint can
never be satisfied at the same time. We reuse this straightforward example of an unsat-
isfiable combination of constraints for the other possible inconsistencies that are shown
in Table 2. Directly Dependent Contradictory Constraints occur if a dependency is de-
fined between two constraints that contradict each other. And-Dependent Contradictory
Constraints are contradictory constraints that are not explicitly connected by a single
dependency but by an arrangement that links them together. Table 2 illustrates such
an arrangement where the postconditions of both Task 1.1 and Task 1.2 must be met
in order to allow a start of Task 2. Constraints in subprocesses or substructures can
be contradictory to constraints of their surrounding structures. Table 2 illustrates an
example of Substructure- or Subprocess-induced Contradictions in which the guard
condition that is defined on the sequence flow in front of the end event contradicts the
completion criterion of the goal. Regularly, there exist larger structures of interdepen-
dent constraints that can be composed of the aforementioned structures. An example
for an Unsatisfiable Composition of Interdependent Constraints is given in Table 2 in
which the Main Goal has a constraint structure that contains contradictory constraints.
In particular, the postcondition of Task 1 contradicts the completion criterion of Goal
2. Such compositions can comprise several aforementioned structures. In the example,
directly dependent constraints are combined with and-dependent constraints in a big-

Table 2. Constraint-Related Inconsistencies in ACM

Naming CMMN Example ISIS Papyrus Example
Self-Contradictory
Constraint

����

����	
��������

����������	��	����	��

����������	��	����

�����������	��

����������	����������

����������	�������

Directly Depen-
dent Contradictory
Constraints

������ ������

�	
���
��
���

�����������������

������
��
���

����������������� �����������	��

����������	�������

����������	��

����������	������

And-Dependent
Contradictory
Constraints

��������

������

��������

	
������������

������������������

	
������������

������������������

�����������	��

����������	������

�����������	��

����������	�������

Substructure-
or Subprocess-
induced Contradic-
tions

��������		

�	�

����������������

������������������

���
�����������������

������������������

���������	
��������	�

���������
��
�����

����
��	����	�

���������
��
����

Unsatisfiable
Composition of
Interdependent
Constraints

������ ������

��	
��

���������������

����������������

��������������

����������������

���������

�������������	

���������
��
����

����������
���������	

���������
��
�����

Conflicting Goals
in Goal Hierarchies ���������

	
������ 	
�������

��������
�������
���������
�������
�

����������

	
�����

�����������

	
���
�

ger, composite structure. Goals can be structured hierarchically [6, 14]. On top of the
hierarchy stands the main goal of a case which is subdivided into subgoals. In Table 2,
an example of a goal hierarchy is given. Naturally, pursuing contradictory goals simul-
taneously would not make any sense. Knowledge workers can work towards Subgoal 1
and Subgoal 2 concurrently, so their completion criteria must not be contradictory.

3 Structural Consistency Checking Approach for ACM

This section introduces our proposed approach for enabling structural consistency check-
ing in ACM. Our approach leverages model checking and graph algorithms.

Model checking performs an exhaustive check whether a model meets a given spec-
ification. A model is often defined as a state transition system, whereas specifications
are usually defined in a formal language such as Computation Tree Logic (CTL). The
CTL expression EF p is satisfied if the expression p holds on at least one subsequent
path. Since model checking works faster when the state space is smaller, it is a good
strategy to look at isolated parts of the model first (Definitions 2, 3 and 4).

Definition 2. (Self-Contradictory Constraint) A constraint c ∈ J is self-contradictory
iff ¬ (EF (c)).

Definition 3. (Directly Dependent Contradictory Constraints) Two constraints c ∈ C
and c′ ∈ C which are directly linked by a dependency (c, c′) ∈ DXE ∪ DSX ∪ DSE are
contradictory iff ¬ (EF (e ∧ e′)).

Definition 4. (And-Dependent Contradictory Constraints) Two constraints c ∈ C and
c′ ∈ C which are and-dependent because ∃((c, t) ∧ (c′, t′)) | (c, t) ∈ D ∧ (c′, t′) ∈
D ∧ t = t′ ∧ c ∈ C ∧ c′ ∈ C ∧ t ∈ C ∧ t′ ∈ C are contradictory iff ¬ (EF (e ∧ e′)).

The remainder of this section is concerned with finding contradictions in larger
structures. We focus exemplary on Dependency Loops and Goal Hierarchies.

3.1 Dependency Loops

Definition 5. (Case Graph) GM = (V,E) is a directed graph representation of M,
where V = T ∪ G ∪ S ∪ C ∪ D is a set of vertices. E is a set of edges which is created
as follows:

– An edge (e, ζE (e)) is added for every e | e ∈ E .
– An edge (ζX (x) , x) is added for every x | x ∈ X .
– An edge (f, d) is added for every d = (f, t) ∈ D.
– An edge (d, t) is added for every d = (f, t) ∈ D.

Definition 6. A dependency loop 	 is given as a strongly connected component (SCC)
of GM.

The set of strongly connected components can be computed by Tarjan’s algorithm [15].

Definition 7. (Inaccessible Dependency Loop) A dependency loop 	 is inaccessible iff
(@e | e ∈ E ∧ ζE(e) ∈	 ∧e /∈) ∧ (@d = (f, t) | d ∈ D ∧ d /∈	 ∧t ∈	 ∧t ∈ T ∪ S)

According to this definition, a dependency loop is accessible if there exists at least either

– one entry criterion which is attached to an element of the dependency loop but is
not part of the loop, or

– a dependency which points to a task or stage of the loop without being in the loop.

3.2 Goal Hierarchies

For the verification of hierarchically structured goals, we first find pairs of goals which
are possibly in contradiction to each other.

Definition 8. A goal g ∈ {x | x ∈ G ∧ ∃η (x)}} is possibly in contradiction with a
goal g′ iff g′ ∈ G \ Gη where Gη is the set of parent goals of g which can be found
by recursive use of η (i.e., η (g), η (η (g)) , η (η (η (g))) , ...) until η returns no further
parent goal.

Then, we can check each found possibly contradictory goal pair (g, g′). Let g.E
denote the set of entry criteria of g and g′.E be the set of entry criteria of g′.

Definition 9. (Conflicting Goals in Goal Hierarchies) Two goals g and g′ are contra-
dictory iff they are possibly in contradiction to each other (cf. Definition 8) and the
formula EF (e ∧ e′) does not hold for at least one {e, e′} | e ∈ g.E ∧ e′ ∈ g′.E .

4 Experimental Results

 0 5 10 15 20 25 30 35 40 45 50
Number of Variables 0

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Number of Values

 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

T
im

e
[m

s]

Fig. 1. Results of performance and scalability evaluation

Model checking is known for its high demands on computational resources. There-
fore, we conducted an experiment on the performance and scalability of our approach.

In this experiment, we measure the response times that are to be expected while check-
ing a combination of string constraints with the NuSMV model checker version 2.5.4 [2].
In particular, an and-connected constraint term that contains between 1 and 50 string
variables is created. Furthermore, the number of possible string values of each vari-
able is between 1 and 50. This scenario is representative for checking large structures
of interdependent constraints in ACM systems because a high count of interdependent
constraints is to be expected. The experiment was carried out on a computer with 8
GB RAM, Intel i5-4200U CPU and SATA II SSD, as we wanted to test our approach
in the usual setting of a software developer or knowledge worker. The experiment was
repeated 1000 times which resulted in sufficient data. The reported values shown in
Figure 1 represent the median of our measurements which is stable against statistical
outliers (e.g., caused by OS activities that we cannot control). Studying the averages
yields similar results and the standard deviation is not significant. Even with a large
number of variables and values, the response time of the model checker stays far below
100 ms, which is still reasonable for checking large problems.

5 Related Work

Formal verification encompasses techniques such as model checking or Petri net based
approaches to assert whether a model definition satisfies certain properties. Kherbouche
et al. use the SPIN model checker5 to find structural errors in BPMN 2 models [7]. Es-
huis proposes a model checking approach using the NuSMV model checker for the
verification of UML activity diagrams [5]. Van der Aalst defines a mapping of EPCs
to Petri nets for checking structural errors [1]. Sbai et al. use SPIN for the verifica-
tion of workflow nets [12]. Raedts et al. propose the transformation of models such as
UML activity diagrams and BPMN 2 models to Petri nets for verification with Petri net
analyzers [10]. Köhler et al. describe a process by means of an automaton and check
this automaton by NuSMV [8]. El-Saber et al. [4] provide a formalization of BPMN
and translate BPMN constructs to the Maude model checker [3]. None of the existing
approaches proposes structural consistency checking for ACM.

6 Conclusion and Future Work

This paper discusses structural consistency checking of ACM. We discuss structural
concepts of ACM and what inconsistencies can possibly occur in such structures. As
our main contribution, we propose structural consistency checking of ACM definitions
that leverages model checking and graph algorithms. Our approach is able to discover
various structural inconsistencies in ACM cases. The experimental results show that
our consistency checking scales well. Our approach strives for computational efficiency
despite the use of model checking. This is achieved by dividing the problem of checking
structural consistency of entire case models into smaller problems. As a result, if already
a single isolated constraint is self-contradictory, it is not necessary to check it as part
of a bigger structure that demands greater computational effort. The approach has been

5 http://spinroot.com

http://spinroot.com

developed in a prototype for an industrial system and tested with real cases.

Acknowledgement.The research leading to these results has received funding from the FFG
project CACAO, no. 843461 and the WWTF project CONTAINER, Grant No. ICT12-001.

Bibliography

[1] Van der Aalst, W.M.P.: Formalization and verification of event-driven process
chains. Information and Software Technology 41(10), 639 – 650 (1999)

[2] Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new Symbolic
Model Verifier. In: 11th Conf.on Computer-Aided Verification (CAV). pp. 495–
499. Springer (July 1999)

[3] Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL Model Checker
and Its Implementation. In: 10th Intl. Conf. on Model Checking Software (SPIN).
pp. 230–234. Springer (2003)

[4] El-Saber, N., Boronat, A.: BPMN formalization and verification using Maude.
In: 2014 Workshop on Behaviour Modelling-Foundations and Applications (BM-
FA). pp. 1:1–1:12. ACM (2014)

[5] Eshuis, R.: Symbolic model checking of UML activity diagrams. ACM Trans.
Softw. Eng. Methodol. 15(1), 1–38 (2006)

[6] Greenwood, D.: Goal-oriented autonomic business process modeling and execu-
tion: Engineering change management demonstration. In: 6th Intl. Conf. BPM.
pp. 390–393. Springer (2008)

[7] Kherbouche, O., Ahmad, A., Basson, H.: Using model checking to control the
structural errors in BPMN models. In: 7th Intl. Conf. on RCIS. pp. 1–12 (2013)

[8] Koehler, J., Tirenni, G., Kumaran, S.: From business process model to consis-
tent implementation: a case for formal verification methods. In: 6th Intl. Conf. on
EDOC. pp. 96–106 (2002)

[9] Pucher, M.J.: Considerations for implementing adaptive case management. In:
Fischer, L. (ed.) Taming the Unpredictable Real World Adaptive Case Manage-
ment: Case Studies and Practical Guidance. Future Strategies Inc. (2011)

[10] Raedts, I., Petković, M., Usenko, Y.S., van der Werf, J.M., Groote, J.F., Somers,
L.: Transformation of BPMN models for Behaviour Analysis. In: MSVVEIS. pp.
126–137. INSTICC (2007)

[11] Rinderle-Ma, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic
changes in workflow systems: A survey. Data & Knowledge Engineering 50(1), 9
(2004)

[12] Sbai, Z., Missaoui, A., Barkaoui, K., Ben Ayed, R.: On the verification of business
processes by model checking techniques. In: 2nd Intl. Conf. on ICSTE. vol. 1, pp.
97–103 (Oct 2010)

[13] Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Pro-
cess flexibility: A survey of contemporary approaches. In: CIAO and EOMAS. pp.
16–30. Springer (2008)

[14] Stavenko, Y., Kazantsev, N., Gromoff, A.: Business process model reasoning:
From workflow to case management. Procedia Technology 9(0), 806 – 811 (2013)

[15] Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal on Com-
puting (1972)

	Supporting Structural Consistency Checking in Adaptive Case Management

