

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Embracing Process Compliance and Flexibility through

Behavioral Consistency Checking in ACM

A Repair Service Management Case

Thanh Tran Thi Kim
1
, Erhard Weiss

1
, Christoph Ruhsam

1

Christoph Czepa
2
, Huy Tran

2
, Uwe Zdun

2

1 ISIS Papyrus Europe AG, Maria Enzersdorf, Austria

{thanh.tran,erhard.weiss,christoph.ruhsam}@isis-papyrus.com
2 Research Group Software Architecture, University of Vienna, Austria

{christoph.czepa,huy.tran,uwe.zdun}@univie.ac.at

Abstract. Enabling flexibility in unpredictable situations with ad hoc actions

decided at runtime by knowledge workers is the main focus of Adaptive Case

Management (ACM) systems. However, ad hoc actions added during case exe-

cution and ACM templates prepared at design time need to be within the

boundaries defined by business constraints, company regulations and legal sys-

tems. In this paper we report our experience in addressing this challenge by us-

ing model checking and runtime monitoring techniques for behavioral con-

sistency checking that can handle both ACM aspects: support by means of pre-

defined process templates and high flexibility by allowing ad hoc actions at

runtime. Our study is conducted using a practical ACM system for repair ser-

vice management handling different customer requirements under diverse com-

pliance and law regulations.

Keywords: Adaptive Case Management, ISIS Papyrus ACM solution, Con-

sistency Checking, Compliance Checking, Business Process Management,

Compliance Rules

1 Introduction

A challenge of business process management (BPM) systems is to react on spontane-

ous or short time process adaptions due to changing business conditions. The rigid-

ness of process definitions and the involved bureaucracy with change management

cycles are hindering process innovation. Although many different approaches have

been suggested to enhance the flexibility of BPM systems, most of them have not

managed to escape from the restrictive nature of the approach [1, 2]. ACM is pro-

posed in the context of knowledge intensive and content centric work. The ACM

principle “design-by-doing” allows users acting as knowledge workers (KW) to

evolve processes embracing both, support of predictable business scenarios by using

well-defined sub-processes and unpredictable scenarios by allowing ad hoc actions

and changes during runtime.

A rigid process configuration aims to ensure that business operation is under con-

trol and satisfies the compliance requirements related to law and regulations. Thus,

process validation needs to consider both, the process model (syntactical consistency)

and the compliance requirements (semantic consistency) [3]. As a consequence of the

evolving nature of ACM cases with ad hoc actions it is unclear how to ensure the

process compliance within the constraints imposed on the business operation by com-

pliance requirements. There are numerous techniques for checking and handling in-

consistencies for well-defined business processes [4].

In our study, the compliance requirements are described using temporal logics, rep-

resented in terms of high-level specification patterns [5]. As the KWs involved in our

studies found temporal logics unfamiliar to their domain of expertise, we devise a

simple high-level domain-specific constraint language that is close to natural lan-

guage to help the KWs in describing compliance requirements defined as compliance

rules. These are automatically translated into temporal logics to be verified for any

potential inconsistencies by powerful model checkers and runtime monitoring en-

gines. We report in this paper the first attempt in applying well-known formal model-

ing and verification techniques to support KWs in ensuring business compliance in

ACM. Our experience is based on applying consistency checking techniques to an

ACM solution for repair service management (RSM) in the ISIS Papyrus ACM sys-

tem [6]. In RSM, diverse requirements from a broad variety of customers have to

comply with a vast range of different laws and regulations. The multiplicity of possi-

ble requirements, constraints and exceptions cannot be efficiently covered alone by

predefined processes. Depending on particular cases, the repair service officer, i.e. the

KW, decides on specific conditions and work lists corresponding to the requirements

of the customer and the discovered circumstances. Still, the KW needs to act in com-

pliance defined by company rules and laws because violations permanently jeopardize

the business and its economical reputation. Since rules must be considered at runtime

and design time, compliance checking must apply for ad hoc actions as well as tem-

plates.

Our work is related to existing studies in the domain of verification of business

processes at design or runtime and to specification languages for the definition of

business rules. Liu et al. propose a framework for model checking of business pro-

cesses at design time that transforms process models into Finite State Machines

(FSM) and translates constraints from a graphical specification language into LTL

[7]. Namiri et al. translate temporal logic patterns to Event-Condition-Action rules

and perform runtime verification [8]. An approach presented by Awad et al. aims at

checking compliance of business process models using a visual query language

BPMN-Q with recurring patterns like ‘leads to’ and ‘precedes’ to describe constraints

and performing model checking to assure constraints are satisfied [9]. Van der Aalst

et al. proposes an approach for checking LTL properties against an event log [10].

Complex Event Processing (CEP) is used for compliance monitoring in the context of

service-oriented architectures (SOA) [11, 12]. The vast amount of existing studies in

this field affirms the need for research and contributions, especially in the area of

runtime verification [13]. We are neither aware of previous studies that proposed a

unified checking approach based on model checking and CEP for the verification of

ACM cases at runtime and design time nor of existing experience reports on handling

business compliance in the context of ACM.

The remainder of our paper is organized as follows: Section 2 introduces our con-

cept for consistency checking as applied to the ISIS Papyrus ACM system. The con-

figuration process for behavioral consistency checking is described in Section 3. Sec-

tion 4 describes our experience of applying the checking in the RSM application.

Finally, Section 5 discusses the lessons learned and concludes the paper.

2 Concepts of Consistency Checking in ACM

2.1 Overview of ACM

ACM cases are driven by goals which are in combination with tasks the core ACM

elements. A significant feature of ACM systems is that the main actor, i.e. the KW, is

empowered to handle events that are unpredictable or even never happened before.

KWs use their implicit knowledge stemming from experience as well as from assess-

ments and research of the current situation to react flexibly to new requirements in

daily work within a permanently evolving business environment. To support KWs in

such situations, ACM provides (a) automation of routine work by sub-processes

which are predefined at design time and executed in the defined order and (b) flexibil-

ity by the free design of activities and their sequences through ad hoc goals and tasks

which are added at runtime by the KW [14, 15]. Goals are achieved by completing its

sub-processes and/or ad hoc tasks and a case closes when all its goals are reached.

2.2 Consistency Checking Applied to the ISIS Papyrus ACM system

Figure 1 shows an overview of the approach taken in this paper: The ISIS Papyrus

ACM system is enhanced with a consistency checking system to ensure that the ACM

case definition at design time and its evolution at runtime do not violate structural

and/or behavioral consistency.

Consistency is regulated by a set of constraints formulated by compliance rules

stored in a rule collection, which are expressed in natural language by business ad-

ministrators. At design time, business administrators define goal and task templates,

and link them with related compliance rules. Consistency checking is done in a two-

fold way: (a) The structural and behavioral consistency of templates is verified by

using model checking alerting the administrator in case of violations. As model

checking is computationally expensive and demands well-defined case models, it suits

a design time approach. (b) The focus of this paper is on compliance checking at

runtime, when KWs create ad hoc actions to reach a goal. These are verified by on-

the-fly checking, which operates on the current execution trace of a running case in-

stance and is based on CEP [16] providing real time feedback in case of constraint

violations by alerting KWs performing ad hoc changes at runtime.

As shown in Figure 2, compliance rules from different sources are imposed on the

execution of ACM cases which are related to laws, contracts with business partners,

general standards, best practices and company internal regulations. A usually underes-

timated source is coming from tacit business knowledge of the KWs [17].

Fig. 1. The ISIS Papyrus ACM environment with consistency checking

In real life, there are basically two scenarios where compliance rules have to influence

the case execution:

Fig. 2. Definition and maintenance of compliance rules in ACM systems

1. Unpredictable situations: (1.1) In such cases, there are typically not yet suitable

templates available. Thus, the KW creates ad hoc actions from generic templates

and takes the responsibility that the ad hoc actions comply with constraints, that

must be followed [18]. (1.2) Applying the best practice principle, business admin-

istrators and/or empowered KWs create new templates from case instances, which

proofed that case goals where repeatedly satisfyingly reached. Additionally, new

compliance rules, which were discovered in (1.1) will be added to the rule collec-

tion. This way, knowledge is preserved in the system to support KWs the next time

when such situations occur.

2. Predictable scenarios: Alternatively, new situations, which a company plans to deal

with, can be analyzed and prepared in advance by business administrators. The

necessary templates and associated compliance rules are added to the system simi-

lar to (1.2) above, before KWs will start to work on such cases.

In both (1.2) and (2) the business administrators benefit from compliance checking as

they will receive alerts during design time if certain constraints are violated.

We have successfully applied a User Trained Agent [19] to suggest best next ac-

tions to KWs in ad hoc situations that are similar to previously handled cases. In the

context of behavioral consistency checking it is important that the UTA builds its

knowledge on compliant ad hoc actions. Thus, the definition of compliance rules is

important in the maintenance of ACM systems.

3 Configuration Process for Behavioral Consistency Checking

Figure 3 shows a configuration process for applying the behavioral consistency

checking in ACM. The process includes two phases: (a) translating the compliance

specifications stemming from different sources from natural language into compliance

rules expressed in a constraint language, (b) assigning compliance rules to templates.

Allowing business people to define such rules in natural language, a constraint rule

editor is supplied, supporting business terms defined by business domain specific

ontologies. It is built upon temporal logic patterns to support the definition of con-

sistency requirements [20] [5]. The rules are linked to ACM elements which are

mapped by business domain specific ontologies to the underlying ACM object model.

This way, new templates (goals, tasks) being adjusted to new requirements are affect-

ed by existent compliance rules, as they are mapped with the associated ontology

concepts. Depending on the scope of rules, they are stored in a rule collection for later

reuse in several templates or embedded into specific cases. Compliance rules defined

within our study are classified into two types which are created for different situa-

tions:

(a) State-based rules define the sequence of actions purely based on the state of

tasks or goals. For example TaskB must start after completion of TaskA.

(b) Data-based rules explicitly involve data in the rule definition. An example is

TaskA.Attribute_n > value. If a new rule relates to data that is already defined in the

system, business administrators simply create a new data-based rule without support

from database experts.

However, if the needed data (Attribute_n in the example above) are not yet mod-

eled in the system, database experts would be needed for the implementation of the

new data requirement with all agility hindering consequences of a product release

management cycle. To overcome such situations, state-based rules in combination

with voting tasks can be defined to enforce the necessary execution sequence. Voting

tasks contain checklists (see Figure 5a) that are suitable for checking conditions man-

ually by users. Later it may be worthwhile to add such data from best practice cases

explicitly to the data model and apply them in data-based rules.

Fig. 3. Configuration process for behavioral consistency checking in ACM systems

A constraint is composed from business ontology elements which relate to the

ACM core elements case, goal, task, data, and temporal patterns expressing the tem-

poral dependency of them, e.g.:

Constraint C1 for CaseN{

 TaskA.finished precedes TaskB.started}

A constraint can be assigned to specific cases (Constraint C1 for CaseN) which will

be triggered when the defined elements in that case are affected, or defined globally

without the ‘for’-part, which will be triggered if any of the defined elements are af-

fected. The states of ACM elements, considered in the constraint definitions are for

goals {initiated, reached, ongoing} and tasks {started, finished, running}.

To enable the definition of more detailed temporal patterns [5], we introduce the

following constraint language expressions:

─ Existence: TaskA.finished occurs

─ Absence: TaskA.finished never occurs

─ Response: TaskA.finished leads to TaskB.started. It means if TaskA.finished hap-

pens, TaskB.started must follow.

─ Precedence: TaskA.finished precedes TaskB.started. It means if TaskB.started shall

happen, TaskA.finished must happen first.

Additionally, each pattern of the aforementioned constraint language expressions can

have a scope, which defines the temporal extent for constraint observation. For exam-

ple, if the constraint C1 shall apply only after TaskA.started, it is defined as

Constraint C1 for CaseN{

After TaskA.started

 [TaskA.finished precedes TaskB.started]}

The scope after defines the execution after a given event. Particularly in this example,

only after the event TaskA.started happened, the events TaskA.finished precedes

TaskB.started must be executed. As shown in Figure 4, there are five basic kinds of

scopes: (1) Global: the entire execution; (2) Before: before the first occurrence of

event R; (3) After: after the first occurrence of event R; (4) Between: between events

Q and R; (5) After-Until: after event Q until event R.

Fig. 4. Pattern scopes

4 Repair Service Management

ISIS Papyrus delivers business applications serving cross industry customer require-

ments. The RSM application is based on the requirements of a customer from the

managed services domain offering facility repair services to industrial and commer-

cial customers. It was used as prototype for applying the consistency checking solu-

tion and validating its practicability. These services involve maintenance, cleaning

and repairs performed by the enterprise’s own employees as well as the engagement

of subcontractors. A broad variety of requirements from the customers and a large

quantity of different laws and regulations must be considered.

From our experience we notice that several business domains are rather overregu-

lated. Thus, compliance regulations imposed externally must be translated into inter-

nal directives being obeyed by processes and KWs and also support external audit

requirements. Company internal standards are treated similarly although they may be

executed more casually. If quantitative measures like time or money are defined,

KWs frequently look for workarounds to reach their goals faster. If they are instructed

to follow strictly predefined steps their knowledge from daily work is not considered.

Thus, excluding their experience from process adaptions causes frustration and poor

customer experience.

The RSM case focuses on the on-the-fly checking as well as on the possibility to

perform consistency checking on ACM templates prepared by business administra-

tors. We focus on the compliance considerations implied by the United States Envi-

ronmental Protection Agency's Lead Renovation, Repair and Painting Rule (RRP

Rule) [21] and the consistency of the team selection process.

4.1 Compliance Definitions

A repair service officer, acting as KW of a company supplying repair services, re-

ceives an order for the replacement of several water pipes in a staff accommodation of

the customer in the United States of America. According to the RRP Rule, the KW

who is dealing with a new service request needs to check whether the repair service

involves activities disturbing painted surfaces in a home or child-occupied facility

built before 1978. Then, it requires a certified inspector or risk assessor to confirm the

repair site to be free of lead-based paint or itemize and depict the surfaces covered

with lead-based painting.

Following the scenario (1.1) from section 2.2, the KW creates a new case for this

repair service order and when facing RRP rules for the first time, adds one or more

generic ad hoc tasks for the treatment of the RRP rule related examinations. He has to

check, (a) whether painted surfaces will be disturbed; (b) whether the repair site is in

a home or child-occupied facility; (c) whether the repair site is in a building built

before 1978; (d) whether the repair site contains lead-based paint (i.e. whether the

repair site has been inspected by a certified inspector or needs to be inspected for

objects painted with lead-based paint); (e) whether a list of items and surfaces covered

with lead-based paint exists or needs to be compiled and whether the repair activities

will affect one of this items and surfaces.

Based on the outcome of the examinations, the KW continues with the case, exe-

cuting ad hoc tasks selected from a list of specific or generic task templates. When the

case handling was confirmed as best practice, an empowered KW or business admin-

istrator saves related tasks as templates and the business administrator builds specific

task templates for the investigation tasks containing checklists (see Figure 5a), com-

poses the necessary compliance rules and references the rules to the repair service

case template.

The checking result is implied through a voting by the KW: approved for Yes and

deny for No. The TaskRRP_Repair contains a checklist proving whether painted sur-

faces will be disturbed by the repair activities or not. The TaskRRP_Site holds a

checklist with the information whether the repair site is a home or a child-occupied

facility and built before 1978. The TaskRRP_Lead contains a checklist informing on

the inspection status of the repair site. The TaskLead_Items holds the information

whether a list of items and surfaces covered with lead-based paint exists or needs to

be compiled and whether the repair service affects one of those items and surfaces.

These task templates are involved in the RRP rule which is described in the following

compliance rules.

Constraint RRP_Compliance0 for RepairServiceCase {

 TaskRRP_Repair.started occurs exactly 1x}

Constraint RRP_Compliance1 for RepairServiceCase {

 TaskRRP_Repair.approved leads to TaskRRP_Site.started}

Constraint RRP_Compliance2 for RepairServiceCase {

 TaskRRP_Site.approved leads to TaskRRP_Lead.started}

Constraint RRP_Compliance3 for RepairServiceCase {

 TaskRRP_Lead.approved leads to TaskLead_Items.started}

Compliance rules are checked on the fly during the execution of ad hoc actions. For

the definition of compliance rules in natural language, a constraint rule editor imple-

mented in the ISIS Papyrus ACM system (see Figure 5b) supports business adminis-

trators with terms used in their daily business work. These are concepts defined in a

business domain specific ontology. The task templates TaskRRP_Repair and

TaskRRP_Site are mapped to business language through the ontology concepts Repair

Impact and Site Categorization, respectively.

Fig. 5. Task_RRP_Site with checklist and constraint rule editor in ISIS ACM system

4.2 On-the-fly Consistency Checking

The next time such an RSM case is executed making use of the newly created tem-

plates, the first rule is triggered on case instantiation fulfilling RRP_Compliance0.

This means, TaskRRP_Repair is part of the case and thus, cannot be skipped or added

multiple times. The KW needs to check on the issue and fulfills the task by selecting a

vote. If TaskRRP_Repair is approved, TaskRRP_Site is suggested to the clerk to end

the temporary violation of constraint RRP_Compliance1. As soon as TaskRRP_Site is

approved, TaskRRP_Lead is suggested to the clerk to end the temporary violation of

constraint RRP_Compliance2, and so on.

Although the sequence of tasks is constrained in this case, other tasks can be exe-

cuted in between which empowers the KW to react to the specific situation as needed.

For example, after the completion of TaskRRP_Repair, the clerk could add the tasks

Order Material, Choose Workers, and so on. At that stage of TaskRRP_Repair the

constraint RRS_Compliance1 is still temporarily violated as TaskRRP_Site is not

started yet. The KW is notified of the violation by proposing it as next task. But he

has the flexibility to perform any additional actions, which he assesses are necessary

to fulfill the goal of the case. The proper point in time for the execution of the sug-

gested TaskRRP_Site is determined by the KW.

Every action of the clerk triggers events monitored by the online checker. The

online checker collates the information of the events with the constraints of the com-

pliance rules. If rules are violated, the online checker produces notifications and sug-

gestions. By creating state-based rules with the compliance rules editor and building

related task templates with checklists and voting options, the business administrator is

able to induce consistency checking without the involvement of IT development. This

approach allows flexible and fast adaption of rapidly changing rules through KWs

without unnecessarily restricting the adaptability of ACM due to changes of underly-

ing data models by IT.

5 Lessons Learned and Conclusion

Our general finding in this study is that behavioral consistency checking of compli-

ance rules has significantly enhanced the ACM solution by embracing flexibility and

enforcing control of company regulations or laws where imposed. Adequate con-

sistency checking has empowered business users in ad hoc situations by providing the

necessary support, allowing them to focus on and engage actively in their work in-

stead of being locked out due to the rigidness of process definitions.

To summarize, business users have been empowered to react ad hoc on individual-

ly assessed situations within the guardrails defined by compliance rules. This was

achieved by the combination of: (i) predefined processes whose behavioral and struc-

tural consistency is checked by model checking techniques during design time, and

(ii) flexibility, which is supported by on-the-fly checking during case execution of ad

hoc added goals and tasks. Business users select ad hoc actions from a set of tem-

plates. When being added to the case, tasks were checked for overall behavioral con-

sistency. Business users acknowledge the advantage of working goal-oriented allow-

ing them to define the actually needed tasks and their execution sequences as they

need within the guardrails of compliance rules defined in a business specific lan-

guage. Our decision in introducing the aforementioned domain-specific constraint

language supporting the business users’ domain of expertise was well accepted. As

the domain-specific ontology concepts can map the elements of the compliance rules

with the underlying data models, the administrators were able to better relate high-

level compliance requirements with technical elements such as cases, process frag-

ments, data objects, etc. The possibility to define voting tasks with freely configurable

check list items without IT involvement for data model extensions is also seen as an

important factor for enabling flexibility in an agile business environment.

Compliance rules are centrally managed and associated with specific cases they

shall apply to. The ACM stakeholders also perceived positively the categories of con-

sistency rules. That is, two types of business rules have provided a responsive solution

for ad hoc changes in ACM: stated-based and data-based. State-based rules are used

by the business administrator or an empowered business clerk to define compliance

rules without the support from IT staff. Data-based rules are applied when the availa-

ble data models allow explicit access to data attributes in order to constrain the execu-

tion of goals and/or tasks of a case.

Our study is one of the first attempts in applying existing formal modeling and ver-

ification techniques to the domain of ACM and in a particular ACM system. Thus,

there is room for future work. For instance, to address the organization of compliance

rules and how to deal with compensation of acceptable compliance rule violations.

Also how ontologies can be effectively applied to formulate domain specific business

rules by business users (non-IT) needs further investigations. We also aim to expand

our findings to other ACM applications and emerging standards. This will help to

improve and strengthen our findings in a broader context, and underline the applica-

tion of formal methods in highly flexible and knowledge intensive systems.

Acknowledgement. This work was supported by the FFG project CACAO, no.

843461 and the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF),

Grant No. ICT12-001.

References

1. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new

paradigm for business process support. Data Knowl. Eng. 53(2), 129-162 (2005)

2. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information

Systems: Challenges, Methods, Technologies. Springer, Heidelberg (2012)

3. Ly, L.T., Rinderle, S., Dadam, P.: Integration and verification of semantic

constraints in adaptive process management systems. Data Knowl. Eng. 64(1), 3-

23 (2008)

4. Fellmann, M., Zasada, A.: State-of-the-art of business process compliance

approaches: a survey. In: 22
nd

 European Conference on Information Systems. Tel

Aviv, Israel (2014)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for

finite-state verification. In: Proceedings of the 21
st
 international conference on

Software engineering. New York (1999)

6. ISIS Papyrus: Adaptive Case Management. http://www.isis-

papyrus.com/e15/pages/business-apps/acm.html

7. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business

process models. IBM Syst. J. 46(2), 335-361 (2007)

8. Namiri, K., Stojanovic, N.: Pattern-Based Design and Validation of Business

Process Compliance. In: Meersman, R., Tari, Z. (eds.) On the Move to

Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, pp.

59-76. Springer, Berlin (2007)

9. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-

Q and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M. (eds.) Business

Process Management: 6
th

 International Conference, BPM 2008, Milan, Italy,

September 2-4, 2008, Proceedings, pp. 326-341. Springer, Berlin (2008)

10. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and

Verification of Properties: An Approach Based on Temporal Logic. In:

Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2005:

CoopIS, DOA, and ODBASE, pp.130-147. Springer, Berlin (2005)

11. Birukou, A., D'Andrea, V., Leymann, F., Serafinski, J., Silveira, P., Strauch, S.,

Tluczek, M.: An Integrated Solution for Runtime Compliance Governance in

SOA. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) Service-Oriented

Computing: 8
th

 International Conference, ICSOC 2010, San Francisco, CA, USA,

December 7-10, 2010, Proceedings, pp. 122-136. Springer, Berlin (2010)

12. Holmes, T., Mulo, E., Zdun, U., Dustdar, S.: Model-aware Monitoring of SOAs

for Compliance. In: Dustdar, S., Li, F. (eds.) Service Engineering, pp. 117-136.

Springer, Berlin (2011)

13. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: A

Framework for the Systematic Comparison and Evaluation of Compliance

Monitoring Approaches. In: Enterprise Distributed Object Computing Conference

(EDOC), IEEE 17
th

 International, pp. 7-16 (2013)

14. Swenson, K.: Case Management: Contrasting Production vs. Adaptive. In:

Fischer, L. (ed.) How Knowledge Workers Get Things Done, pp. 109-116. Future

Strategies Inc., Lighthouse Point, FL (2012)

15. Tran, T.T.K., Pucher, M.J., Mendling, J., Ruhsam, C.: Setup and Maintenance

Factors of ACM Systems. In: Demey, Y.T., Panetto, H. (eds.) On the Move to

Meaningful Internet Systems: OTM 2013 Workshops, pp. 172-177. Springer,

Berlin (2013)

16. Espertech: Complex Event Processing (CEP). http://www.espertech.com

17. Governatori, G., Rotolo, A.: Norm Compliance in Business Process Modeling. In:

Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) Semantic Web Rules - International

Symposium, RuleML 2010, Washington, DC, USA, October 21-23, 2010.

Proceedings, pp. 194-209. Springer, Berlin (2010)

18. Sem, H.F., Carlsen, S., Coll, G.J.: Combining Compliance with Flexibility. In:

Fischer, L. (ed.) Thriving on Adaptability: Best Practices for Knowledge

Workers, pp. 59-71. Future Strategies Inc., Lighthouse Point, FL (2015)

19. Tran, T.T.K., Ruhsam, C., Pucher, M.J., Kobler, M., Mendling, J.: Towards a

Pattern Recognition Approach for Transferring Knowledge in ACM. In:

Enterprise Distributed Object Computing Conference Workshops and

Demonstrations (EDOCW), IEEE 18
th

 International, pp. 134-138 (2014)

20. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative

Service Flow Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) Web

Services and Formal Methods, 3
rd

 International Workshop, WS-FM 2006 Vienna,

Austria, September 8-9, 2006, Proceedings, pp. 1-23. Springer, Berlin (2006)

21. United States Environmental Protection Agency: Lead Renovation, Repair and

Painting Program Rules. http://www2.epa.gov/lead/lead-

renovation-repair-and-painting-program-rules

	1 Introduction
	2 Concepts of Consistency Checking in ACM
	2.1 Overview of ACM
	2.2 Consistency Checking Applied to the ISIS Papyrus ACM system

	3 Configuration Process for Behavioral Consistency Checking
	4 Repair Service Management
	4.1 Compliance Definitions
	4.2 On-the-fly Consistency Checking

	5 Lessons Learned and Conclusion
	References

