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Abstract: Many approaches for keeping business processes in line with constraints stemming from
various sources (such as laws, standards, internal policies, best practices, etc.) are based on Linear
Temporal Logic (LTL). Creating LTL specifications is an error-prone task, which entails the risk
that the formula does not match the intention of its creator. Manual testing is time-consuming and
usually limited to a small amount of test cases. This paper proposes a semi-automatic plausibility
checking approach for LTL-based specifications. Additionally to the LTL formula, the user specifies
the desired behavior of the LTL specification in several smaller parts, namely by an initial truth value
and one or more temporal queries (TQs). TQs change the truth value once a specific pattern of events
occurred in an event trace. By this approach, a large set of test cases for the LTL specification can be
created automatically. The work summarized in this extended abstract has been published in [Cz16].
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1 Introduction

Linear Temporal Logic (LTL) has become a de facto standard for defining system speci-
fications due to its extensive use in model checking (cf. e.g., [Ro11]) and the possibility
to automatically translate LTL formulas to nondeterministic finite automata (NFA) for
runtime verification on finite traces (cf. e.g., [DGDMM14]). In business process manage-
ment, LTL plays an important role in the verification of business processes. Elgammal et
al. [El14] propose a compliance request language (CRL) with underlying LTL represen-
tations. Pesic & van der Aalst [PvdA06] suggest ConDec, a graphical language for the
definition of declarative workflows with mappings to LTL formulas.

The creation of LTL formulas is a challenging and error-prone task that requires consid-
erable knowledge and experience. It is hardly surprising that higher levels of abstraction,
such as CRL and ConDec, are often preferred to creating LTL formulas from scratch.
However, there are two major issues when solely trying to rely on a pattern-based ap-
proach. Firstly, formal patterns that precisely match the intention of the user might not be
available. Hence, manually defining a new formula by modifying or combining existing
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patterns or by creating a new specialized LTL formula might be required. Secondly, if an
existing candidate pattern has been identified, it remains unclear whether the intention of
the creator is really met. Either the meaning of the pattern could be misinterpreted or the
LTL formula might contain errors.

To the best of our knowledge, finding errors in LTL formulas has not yet been investigated
sufficiently. Salamah et al. [Sa05] propose to use a set of manually created test cases to
check the plausibility of pattern-generated LTL formulas. However, this involves the user
in the generation process of all the sample traces and the expected truth values at the
end of these traces. This results usually in a small number of test cases since the manual
specification of test cases is time-consuming.

2 Approach

The proposed plausibility checking approach aims at supporting users during the creation
of LTL formulas. Figure 1 provides an approach overview.
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Fig. 1: Approach Overview

Whenever an LTL formula is created or modified, the user also creates a plausibility spec-
ification which is used to encode the desired behavior of the LTL formula. The plausibility
specification consists of an initial truth value (either temporarily satisfied or temporarily
violated) and one or more temporal queries (TQs) which describe truth value changes. A
TQ consists of a temporal expression that uses a subset of EPL (Event Processing Lan-
guage) [Esa], more specifically the operators every (∀), until (U ), leads-to ( ), not (¬),
and (∧), or (∨), and a truth value to which the reference truth value is changed to once the
temporal expression is matched by a given trace. A temporal query is of the form eV r
where e is an temporal expression and r is a truth value. The expression formed by the
operator V implies that there is a change of the truth value caused by the temporal ex-
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pression e and the resulting truth value is r (⊥ for temporarily violated, > for temporarily
satisfied, ⊥P for permanently violated, >P for permanently satisfied).

The temporal expression of a TQ is enacted as a statement by the CEP (Complex Event
Processing) engine Esper [Esb] which fires a listener that turns the reference truth value
to the defined truth value once the statement is matched. The LTL formula is transformed
into a nondeterministic finite automaton (NFA) by the LTL2NFA algorithm [DGDMM14].
Both the NFA and CEP receive as inputs the elements of finite traces. These inputs lead to
changes of both the truth value, which reflects the current state of the automaton, and the
reference truth value determined by the CEP engine. In order to achieve a positive plausi-
bility checking result, there must not be any deviation between the truth value (determined
by NFA) and the reference truth value (determined by CEP) for all inputs. In case of a
deviation, a counterexample trace and the truth values of both the LTL formula and the
plausibility specification are being made available as a starting point for correction.

Since the reference truth value is determined by the plausibility specification, manually
assigning a truth value to a trace is no longer necessary. Consequently, a large number of
test cases can be generated automatically based on the plausibility specification.

3 Discussion of Applicability in the Context of Specification Patterns

In 1999, Dwyer et al. publish a paper entitled “Patterns in property specifications for finite-
state verification” [DAC99] alongside with a constraint pattern collection called “Property
Specification Patterns” which is available online3. In the FAQs, the following information
is stated: “Mappings were validated primarily by peer review amongst the project mem-
bers, with assistance from several other people on selected pattern mappings. Some of the
mappings also underwent testing by running existing FSV4 tools to analyze small finite-
state transition systems which encode (un)satisfying sequences of states/events.”. Conse-
quently, we cannot assume the correctness of a pattern representation. As an example for
an LTL formula that does not match our understanding of the corresponding pattern, we are
now going to discuss the Precedence After pattern (after a: b precedes c) and its LTL repre-
sentation G (¬a)∨F (a∧(¬c W b)). We formulate a single TQ a ¬b U cV⊥P which
causes the truth value to switch to permanently violated once there has been an a but there-
after no b until c occurs. Plausibility checking notifies us of the counterexample [a,c,a]
where the LTL formula is satisfied. According to the pattern scopes defined by Dwyer
et al. [DAC99], the after scope after a starts at the first occurrence of a. Thus, with the
occurrence of the trace [a,c] the pattern becomes permanently violated because b should
have happened in between the first occurrence of a and the occurrence of c. Consequently,
every suffix of [a,c] must not cause any further change of the truth value of the pattern, so
there must be something wrong with the LTL formula. The reason why the LTL formula is
incorrect becomes obvious when we substitute the weak until by one of its equivalences.
Then the modified formula is given as G (¬a)∨F (a∧ ((¬c U b)∨G (¬c))). The trace
[a,c,a] meets the LTL formula by satisfying the subformula F (a∧G (¬c)) through the
3 http://patterns.projects.cis.ksu.edu
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second occurrence of a because the trace ends there and c is not present after this a. From
our point of view, a correct LTL formula for this pattern is (G¬a)∨(¬a U (a∧(¬c W b)))
because here it is ensured that only the first a starts the scope.

4 Conclusion

This papers discusses a plausibility checking approach which requires the user to specify
the desired behavior of the LTL specification in several smaller parts, namely by an initial
truth value and temporal queries. This enables the evaluation of LTL formulas against a
large set of automatically generated test cases that are based on the provided plausibility
specification. Existing pattern-based approaches, such as CRL and ConDec, may benefit
from this approach whenever it becomes necessary to extend the set of supported con-
straints.
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