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Abstract—Software architecture compliance is concerned with
the alignment of implementation with its desired architecture and
detecting potential inconsistencies. The work presented in this
paper is specifically concerned with behavioral architecture com-
pliance. That is, the focus is on semantic alignment of implemen-
tation and architecture. In particular, this paper evaluates three
representative approaches for describing semantic constraints in
terms of their understandability, namely natural language de-
scriptions as used in many architecture documentations today, a
structured language based on specification patterns that abstract
underlying temporal logic formulas, and a structured cause-
effect language that is based on Complex Event Processing. We
conducted a controlled experiment with 190 participants using a
simple randomized design with one alternative per experimental
unit. Overall all approaches support a high level of correct
understanding, and the statistical inference suggests that all
tested approaches are equally well suited for describing semantic
constraints for behavioral architecture compliance in terms of
understandability. In consequence this indicates that it is possible
to benefit from the tested structured languages with underlying
formal representations for automated verification without having
to suffer from decreased understandability. Vice versa, the results
suggest that the use of natural language can be a suitable way
to document architecture semantics when reliable automated
support for formal verification is of minor importance.

I. INTRODUCTION

A key problem of architectural design is that the design
and the implementation drift apart during development and
system evolution. Inconsistencies between the designed and
implemented architecture are commonly referred to by terms
such as architectural drift, architectural erosion or architec-
tural decay (cf. [1–3]). Software architecture compliance (also
referred to as software architecture conformance) is concerned
with the alignment of the architecture of software and its
implementation to avoid architectural drift. Existing studies
have a strong focus on either structural architecture compli-
ance (e.g., Knodel & Popescu [4]) or behavioral architecture
compliance (e.g., Ackermann et al. [5]). An example for
structural non-compliance would be a missing relationship
in the implementation that is part of architectural design. In
contrast, behavioral architecture compliance investigates the
semantic consistency of an implementation and its architec-
ture. An example for behavioral non-compliance is that an

architectural pattern like Model-View-Controller is used in
the architecture description, but the order of the invocations
between the Model, View, and Controller components in the
implementation does not comply to the pattern’s semantics.
Architectural compliance has been a recurring research inter-
est, and many contributions have been made in the domain of
structural architecture compliance (e.g., Passos et al. [6] for
design time checking and de Silva & Balasubramaniam [7] for
runtime monitoring) and behavioral architecture compliance
(e.g., Bucchiarone et al. [8] for design time checking and
Nicolaescu & Lichter [9] for runtime checking).

Despite the progress in recent years, there are aspects that
have not been studied sufficiently. One of the shortcomings
of many existing studies is the lack of evaluation of the
specification languages in terms of their understandability by
potential stakeholders in the software development process.
Obviously, understandability is an integral part of the potential
practical success of an architecture compliance approach. Ex-
isting studies often propose their own specific representations
for describing semantic or structural constraints, but so far
they do not sufficiently evaluate the understandability of those
representations (e.g., [9–11]). Some studies merely report the
experience with a specific representation rather informally
(e.g., [12]). As a consequence, it most often remains unclear,
how understandable proposed representations for architecture
compliance checking actually are.

In this study, we evaluate the understandability of two
representations for semantic architecture constraints that are
grounded on established runtime and design time verification
techniques, plus natural language, which is commonly used
for architecture documentation in practice today. In particular,
the first of the structured languages we study is grounded on
formal temporal logic (for verification by model checking [13]
and automata-based runtime checking [14, 15]). The second
language is based on Complex Event Processing (CEP) [16]
which is used in many approaches for specifying (among
others) behavioral architecture compliance aspects based on
runtime events that can be automatically monitored while the
system executes (e.g., [7, 17]). In these languages, following



Martin Fowler’s advice on business-readable DSLs1, we try
to facilitate understanding structured languages by leveraging
natural language elements and indentation-based structuring.
We do not only evaluate the understandability of the repre-
sentations, but also discuss the properties of their underlying
checking approaches and how to transform the representations
to formal languages for automated checking.

A. Problem Statement

It is possible to describe a semantic constraint in natural
language (e.g., in English). This seems to have the advantage
that the semantic constraint is accessible without the need for
learning or understanding a specific notation, but natural lan-
guage might leave room for interpretation, which could pose
a problem for both humans and automated natural language
processing.

To decrease the chance for ambiguity, it might make sense
to limit the language elements. That is, an alternative is to use
a controlled vocabulary and grammar which aims at reducing
ambiguity. The downside of this approach might be that
the resulting languages are not understood by users without
additional explanations and learning of the syntax of the
language. These structured languages have the advantage that
they are directly transformable to technical representations.
For example, Yu et al. [18] propose a property pattern-based
specification language based on the property specification
patterns by Dwyer et al. [19], named PROPOLS, for verifying
BPEL service composition schemes. The patterns used in
such structured languages are grounded on formalisms such
as Linear Temporal Logic (LTL) [20]. That is, semantic
constraints are automatically transformable from the structured
language to LTL, and the LTL formulas can be used for model
checking [21] or for runtime checking by transforming the LTL
formula to a nondeterministic finite automaton [15].

Running systems (e.g., enterprise systems with many run-
ning processes) usually create a large quantity of events. Com-
plex Event Processing (CEP) is an approach for processing
a large quantity of events and for reasoning on the formed
stream of events (cf. [16]). The Event Processing Language
(EPL) [22] can be used to define semantic constraints con-
sisting of temporal queries that are used for reasoning on the
stream of events. In our previous work (cf. [23]) we propose
to use a subset of EPL for describing semantic constraints,
resulting in a reasonable set of constructs, which might
qualify this approach as an approachable structured language
for describing semantic constraints for runtime architecture
compliance checking.

Currently, it is unknown which of the semantic constraint
representations for architecture compliance is better under-
stood by users. One could claim that natural language is
the best approach as it is the language of everyday life
and therefore often used for architecture documentation. An
argument against this notion is its ambiguity, which leaves
room for interpretation and error. Structured languages (i.e.,
abstracting formal and technically underlying languages such

1http://www.martinfowler.com/bliki/BusinessReadableDSL.html

as LTL and EPL) leave less room for ambiguity, but might
not be that intuitive and approachable as natural language.
Each approach comes with assumed pros and cons. Scientific
evidence is required to rank one approach below, above or
equal to another in terms of understandability in the context
of specifying and checking architecture compliance.

B. Research Objectives

This paper investigates three representative ways for de-
scribing semantic architecture constraints, namely in natural
language and in two structured languages, one based on formal
temporal logic patterns (cf. Dwyer et al. [19]), the other based
on Complex Event Processing [16]. This investigation focuses
on the perspective of the user (in the context of our evalua-
tion, our focus is on novice software architects, designers or
developers) who has to understand these semantic architecture
constraints. In particular, this investigation is concerned with
finding out whether there is a difference between the languages
both in terms of the time needed and the correctness of
understanding.

We state the experimental goal using the GQM (Goal
Question Metric) goal template [24] as follows:
Analyze representations for describing semantic constraints
for software architecture compliance
for the purpose of their evaluation
with respect to their understandability
from the viewpoint of a novice software architect, designer
or developer
in the context (environment) of the Software Architectures
Lab course at the University of Vienna.

C. Context

The study was carried out with 190 computer science
students who enrolled in the course “Software Architectures
Lab” at the University of Vienna in the end of the summer
term 2016. This course is usually taken in the fourth semester.
At that time, the students have been trained in software
engineering, architecture and development in this and prior
courses. Consequently, the students are used as proxies for
novice software architects, designers or developers. The time
of the experiment was limited to 105 minutes.

D. Guidelines

This work follows the guidelines for conducting and re-
porting experiments in software engineering by Jedlitschka
& Ciolkowski [25], which integrate (among others) the pre-
liminary guidelines by Wohlin et al. [26] and the guide-
lines by Kitchenham et al. [27]. Moreover, we consider the
“Basics of Software Engineering Experimentation” by Juristo
& Moreno [28] for the experiment design and the “Robust
Statistical Methods for Empirical Software Engineering” by
Kitchenham et al. [29] for the statistical evaluation of the
acquired data.



Fig. 1: Design time architecture compliance checking by
model checking

II. BACKGROUND ON SEMANTIC ARCHITECTURE
COMPLIANCE CHECKING TECHNIQUES AND CONSTRAINT

REPRESENTATIONS

Model checking is an established verification technique
which evaluates the model of a system against its specification
under the consideration of all possible execution traces [13,
30]. Figure 1 shows an overview of architecture compliance
checking by model checking. Each Semantic Architecture Con-
straint is transformed (e.g., an automated DSL transformation
by Xtend) to a Property Specification, a formal temporal logic
formula in LTL (Linear Temporal Logic) or CTL (Computa-
tion Tree Logic) (cf. [21]). An Implementation can also be
automatically transformed to a System Model (e.g., [31] for
C++ and [32, 33] for Java). Some semantic constraints might
depend on additional information (e.g., a layer number), so
the code may have annotations in such cases that provide the
required additional information. The Model Checker uses both
the Property Specification and System Model as inputs, and it
reports for each specification either a Witness Trace (in case
of a positive checking result) or a Counterexample Trace (if
the Semantic Architecture Constraint is not satisfied by the
Implementation).

In contrast to design time checking on the basis of code,
runtime checking observes the actual execution of software.
Figure 2 provides a rather generic and abstract overview
on architecture compliance checking at runtime. A Running
Application emits events over time, and Runtime Compliance
Checking evaluates each Semantic Architecture Constraint
on the basis of received events. To become more concrete,
we consider the extraction of events from Java programs at
runtime by bytecode manipulation (e.g., de Silva & Balasub-
ramaniam [7]). The built-in package java.lang.instrument
can be used to enrich Java bytecode with additional code,
such as console outputs or event emissions to architecture
compliance checking approaches. There also exist additional

Fig. 2: Generic runtime architecture compliance checking

Fig. 3: Transformation for runtime checking by NFA

bytecode manipulation libraries such as OW2 ASM2, Apache
Commons BCEL3 and JBoss Javassist4. Especially Javassist
provides a quite intuitive way to implant code before and after
invocations by the methods insertBefore and insertAfter

provided by the CtMethod class.
As shown in Figure 3, for the runtime verification by a

Nondeterministic Finite Automaton (NFA), it is necessary to
transform the Semantic Architecture Constraint to an LTL
formula in the first step. For example, if the original language
is a structured DSL (e.g. in Xtext), then a generator (such as
Xtend) can perform this transformation automatically. Having
created the LTL formula, we make use of existing transforma-
tion approaches that automatically generate NFA from LTL
such as LTL2NFA [15], and we enact the NFA as runtime
checker [34].

For runtime checking by CEP, we make use of the open
source version of Esper5. To create the Complex Event Pro-
cessing Instruction for the runtime checking of a Semantic
Architecture Constraint, a transformation (e.g., from an Xtext
DSL to Xtend) must take place. The resulting instruction
consists of the information about the initial truth value of
the semantic constraint (i.e., some constraints are initially
violated, others satisfied) and for setting up a root statement for
observing the event stream. A Statement always has an EPL
(Event Processing Language) expression. If the event pattern
(described in EPL) is observed in the stream, the Statement
invokes the specified Listener. A Listener can change the Truth
Value of the constraint and lead to the creation of a new
Statement.

2http://asm.ow2.org/
3https://commons.apache.org/proper/commons-bcel/
4http://www.javassist.org/
5http://www.espertech.com/products/esper.php



Fig. 4: Transformation for runtime checking by CEP

A. Natural Language Semantic Constraint Representation
Natural Language Constraints (NLC) are an approach that

enables the description of semantic constraints by the full
range of a natural language (e.g., English). Natural language
processing (NLP) is concerned with analyzing the given infor-
mation (cf. [35]). It should be mentioned that natural language
understanding is considered to be AI-complete (cf. [36]).
Consequently, it is considered to be difficult to create software
that actually is able to understand each and every semantic
constraint in natural language reliably. Nonetheless, according
to a recent work by Ghosh et al. [37], the ARSENAL (Au-
tomatic Requirements Specification Extraction from Natural
Language) approach supports the automated transformation of
natural language to LTL formulas in specialized domains, and
the authors even claim its generalizability to other domains.
However, the authors also state that including the human in the
transformation process usually leads to better results, so the
approach must be considered as semi-automatic. Example 1
describes a strict layered architecture6 in natural language.

Example 1:

A component A may only invoke interfaces of
components that are one layer beneath A.

B. Temporal Logic Pattern-Based Semantic Constraint Repre-
sentation

Temporal Logic Constraints (TLC) are formally grounded
on temporal logics such as Linear Temporal Logic (LTL) [20].
In particular, it uses established temporal logic patterns for
abstraction of underlying formal logics as proposed by Dwyer

6The layers example unites both static and behavioral aspects of software ar-
chitecture compliance and is chosen to illustrate that the discussed behavioral
checking approaches may also be used to verify static aspects. For strictly
behavioral constraints, we refer the interested reader to the experimental
material in Section III-C.

et al. [19]. Frequently used patterns are the Response, Prece-
dence, Existence and Absence patterns. Besides the Global
scope, it is possible to define four other scopes, namely
Before, After, After Until and Between. The approach further
abstracts the patterns by providing a structured language for
the definition of semantic constraints. Example 2 describes a
layered architecture by this approach. It demands the Absence
of an invocation of a component with a greater layer number
and the Absence of an invocation of a component with a
smaller layer number than the invoker’s layer number minus
one.

Example 2:

any of the following never occurs:

‘layer number’ greater than
‘invoked by’.‘layer number’

‘layer number’ less than
‘invoked by’.‘layer number’ - 1

Due to the pattern-based approach, the structured natural
language constraint given in Example 2 can be automatically
transformed to its formal LTL representation (cf. [19]).

C. CEP-Based Cause-Effect Semantic Constraint Representa-
tion

Cause-Effect Constraints (CEC) have their roots in Complex
Event Processing (CEP). In CEP, an event stream is observed
for the occurrence of a specific pattern of events. This rep-
resentation is based on a subset (cf. [23]) of EPL (Event
Processing Language) [22]. In particular, the Cause-part may
contain the structured natural language operators every P, P
does not happen until Q, P leads to Q, not P, P and Q, and P
or Q, which can be directly transformed to EPL. The Effect-
part is indented to avoid structuring by brackets (as known
from Python) and consists of a state value change and/or
additional Cause-Effect statements. Example 3 describes a
layered architecture using this approach. An invocation of a
component with a greater layer number causes a violation
of the constraint, and an invocation of a component with a
smaller layer number than the invoker’s layer number minus
one causes a violation of the constraint as well.

Example 3:

is initially satisfied

‘layer number’ greater than
‘invoked by’.‘layer number’

causes violation

‘layer number’ less than
‘invoked by’.‘layer number’ - 1

causes violation

III. EXPERIMENT PLANNING

A. Goals
The experiment’s goal is to measure the construct under-

standability of the three representations, namely Natural Lan-
guage Semantic Constraints, Temporal Logic Pattern-Based



Semantic Constraints and Cause-Effect Semantic Constraints.
The quality focus is on the correctness and the response time
of the answers.

B. Experimental Units
The participants of the experiment are students of the

Faculty of Computer Science at the University of Vienna,
Austria, who enrolled in the “Software Architectures Lab”
course in the summer term 2016.7 This course, which is
intended for students in the fourth semester, is concerned
with teaching principles of software architecture, such as
architectural views, styles and patterns, and domain-driven
design. In previous courses, the students received training in
programming, software engineering and modeling. We carried
out the experiment just like a normal exercise, so the students
were not informed that they take part in an experiment. The
students earned credits in the course based on their perfor-
mance in this exercise. In total, there are 190 participants.
Due to random assignment of participants to groups, the final
distribution resulted in 65 : 64 : 61.

C. Experimental Material & Tasks
The experimental material is based on a selection of ar-

chitectural software design patterns. These patterns are the
basis for the semantic constraints used in the experiment. In
particular, the Broker, Layers, Pipes & Filters and Producer-
Consumer patterns (cf. [38]) are used. In total there are
four tasks, each concerned with a semantic constraint related
to an architectural pattern. Each task comprises a semantic
constraint specification (for an example see Section II) and
four questions. Each question consists of the sentence “Is
the following a legal trace of the system according to the
specification above?”, an event log trace and an answer choice.
Since in this paper the tasks cannot be described at a level
of detail, so that a replication is possible, we make the
questionnaire of each group available online.8

D. Hypotheses, Parameters, and Variables
We formulate the following hypotheses for this controlled

experiment:

H0 : There is no difference in terms of understandability
between the approaches.
HA : The approaches differ in terms of their understandability.

There are two dependent variables: (1) the correctness
achieved in answering the questions, and (2) the response
time, which is the time it took to answer the questions. These
two dependent variables are commonly used to measure the
construct understandability (cf. [39, 40]). The independent
variable (also called factor) has three treatments, namely the
three different representations for describing semantic con-
straints, which are the Natural Language Semantic Constraint
Representation, the Temporal Logic Pattern-Based Semantic
Constraint Representation, and the CEP-Based Cause-Effect
Semantic Constraint Representation.

7https://ufind.univie.ac.at/en/course.html?lv=050054&semester=2016S
8https://swa.univie.ac.at/ICSA2017/

E. Experiment Design & Execution

We use a simple randomized design with one alternative per
experimental unit. By this, we try to avoid learning effects
and experimenter bias in the assignment to groups. Before
the participants of the TLC and CEC group start working
on the tasks, they read through a concise introduction of the
notation. These introductions are provided at the beginning of
the questionnaire. Aside from that information, no additional
training is provided to the participants.

F. Procedure

The experiment has a total duration of 105 minutes. In
this time, everything related to the experiment that has to be
done by the participants has to be completed, which involves
several activities to be performed in the handed-out document.
Firstly, the participants have to fill out information on their
background comprising the number of years of programming
experience, the number of years working in the software
industry, the number of years applying software design pat-
terns, and whether or not there is any prior knowledge on
logical formalisms or Complex Event Processing. Secondly,
the document informs on how to track time correctly. Thirdly,
the structure and meaning of event logs is quickly discussed.
Fourthly, specific aspects of the provided semantic constraint
approach are discussed concisely. Fifthly, the participants try
to complete the given tasks, which includes tracking the time
and answering the questions. The experiment was carried out
following this plan without known deviations.

IV. ANALYSIS

A. Descriptive Statistics & Data Set Preparation

In this subsection, we discuss the preparation of the data set,
and we present the acquired data with the help of descriptive
statistics.

The experience of the participants per group in different
categories, namely programming experience, industrial expe-
rience, experience with software patterns and experience with
logical formalisms and Complex Event Processing, is shown
in Figure 5. Overall, the random distribution of participants
to groups is almost balanced with few minor exceptions.
The NLC group seems to be slightly more experienced in
programming and logical formalisms while the TLC group
seems to be slightly less experienced in programming.

Missing response times (12.1 percent) are substituted by
the average response time of the group per task. There is not
enough evidence to remove potential outliers from the data,
because the response times are plausible and the correctness
reflects the actual understanding of the participants, which
might vary from person to person to a great degree. Conse-
quently, a very good or very bad performance of a participant
is considered to be a valuable piece of data that must not be
removed.

Table I contains the number of observations, central ten-
dency measures and dispersion measures per notation. The
acquired data is visualized by boxplots in Figure 6 and by
kernel density plots Figure 7. The TLC group has its medians



(a) Programming experience (b) Industrial experience

(c) Software pattern experience (d) Experience with logical
formalisms and Complex Event

Processing

Fig. 5: Experience of participants per group

TABLE I: Number of observations, central tendency and
dispersion per group

NLC CEC TLC

Number of observations 65 64 61

Mean response time [min] 56.23 53.98 51.97
Standard deviation [min] 13.64 11.23 12.53
Median response time [min] 56.00 54.87 51.97
Median absolute deviation [min] 10.38 11.90 13.29
Min. response time [min] 10.38 31.00 20.00
Max. response time [min] 90.88 81.13 92.00

Mean correctness [%] 73.27 76.95 79.30
Standard deviation [%] 14.97 19.02 17.40
Median correctness [%] 75.00 75.00 81.25
Median absolute deviation [%] 18.53 27.80 18.53
Min. correctness [%] 37.50 37.50 37.50
Max. correctness [%] 100 100 100

and quantiles above those of the other groups in terms of
correctness. For the response time, this group has its medians
and quantiles below those of the other groups. There is one
outlier in the Cause-Effect group regarding the correctness
variable, and there is a single response time outlier both in
the TLC and NLC group. The kernel density plots enable a
more detailed visualization of the distribution of the data than
the previously discussed visualization by boxplots. According
to the kernel density plots, the data does not appear to be

(a) Correctness (b) Response time

Fig. 6: Boxplots of the dependent variables per group

(a) Correctness (b) Response time

Fig. 7: Kernel density plots of the dependent variables per
group

normally distributed, and the distributions look different which
implies unequal variances in the different groups. This holds
especially for the correctness data. Moreover, it can be seen
that the NLC group has its peak correctness at about 75%.
In contrast to the other groups, the density drops rapidly
thereafter, so less participants were able to achieve a high
percentage of correctness. The TLC group has its peak at
about 90%. In contrast to the two other groups, the CEC group
has two peaks, one at about 70% and another at about 95%.
With regards to response time, the peaks of the TLC and NLC
groups are at about 50-55 minutes. However, there is a higher
density in the NLC group in the range of 30 to 50 minutes.
The peak density of the CEC group is at about 60 minutes.

The data acquired in this experiment is publicly available.9

B. Hypothesis Testing

The multivariate analysis of variance (MANOVA) is a
suitable statistical procedure in the presence of two dependent
variables. However, before applying MANOVA, necessary
assumptions must be met. A graphical analysis by kernel
density plots and normal Q-Q plots, and Shapiro-Wilk tests
of the data suggest that the univariate normality assumption
does not hold for the correctness of the CEC (p = 0.00093)

9http://doi.org/10.5281/zenodo.321632



TABLE II: Cliff’s d for correctness

CEC vs. TLC CEC vs. NLC TLC vs. NLC

p1 = P (X > Y ) 0.41291 0.52356 0.56242
p2 = P (X = Y ) 0.11347 0.10144 0.09987
p3 = P (X < Y ) 0.47362 0.375 0.3377

d 0.06071 −0.14856 −0.22472
sd 0.10301 0.10119 0.10115
z 0.58933 −1.4681 −2.22158

CI (low) −0.14151 −0.33905 −0.41194
CI (high) 0.25807 0.05364 −0.01929

p 0.55672 0.14455 0.02813
FDR adjusted p 0.55672 0.2891 0.16443

and TLC (p = 0.00043) groups. For checking the linearity
assumption, we investigate Residuals vs. Fitted Graphs for
each group. These plots indicate that the linearity assump-
tion is not met by the data sufficiently. Consequently, the
power of the test might be affected. Since multivariate and
parametric testing might lead to unreliable results due to
unsatisfied model assumptions, we fall back to univariate
non-parametric testing. The Kruskal-Wallis test is strongly
affected by unequal variances (cf. Kitchenham et al. [29]),
so its outcome might also not be reliable, when we consider
the properties of the acquired data. As a consequence, we
use Cliff’s δ [41], a robust non-parametric test. This test
is unaffected by change in distribution, non-normal-data and
possible non-stable variance. Table II and Table III show the
results. Multiple testing (n = 6) requires us to lower the
significance level in order to avoid type I errors (detecting
an effect that is not present). As a classical and wide-spread
method, the Bonferroni correction suggests to lower the alpha
value to α = 0.05

6 = 0.0083̇, but the method is also known
to skyrocket type II errors (failing to detect an effect that is
present). As an alternative that is more robust against type II
errors, we also look at FDR (False Discovery Rate) adjusted
p-values [42]. Both approaches suggest that neither of the
tests has a significant result. Additionally, the other mentioned
tests (MANOVA and Kruskal-Wallis), which might however
be affected by unsatisfied model assumption, do not have
significant results. Consequently, there is evidence that H0

(“There is no difference in terms of understandability between
the approaches”) cannot be rejected. We used the statistics
software R10 for all statistical analyses. In particular, we used
the following libraries for the statistical analysis of the data:
biotools, mvnormtest, usdm, car, psych, mvoutlier, ggplot2,
orddom.

V. DISCUSSION

A. Evaluation of Results and Implications

While the descriptive statistics slightly are in favor of the
Temporal Logic Pattern-Based Semantic Constraint Represen-
tation, the inferential statistics do not indicate any significant
difference between the three approaches. This might imply
that it does not matter in terms of understanding by the user
(who is moderately well trained in software development and

10https://www.r-project.org/

TABLE III: Cliff’s d for response time

CEC vs. TLC CEC vs. NLC TLC vs. NLC

p1 = P (X > Y ) 0.54995 0.45553 0.3947
p2 = P (X = Y ) 0.01409 0.01058 0.01412
p3 = P (X < Y ) 0.43596 0.53389 0.59117

d −0.11399 0.07837 0.19647
sd 0.10352 0.10214 0.10134
z −1.10113 0.76723 1.93869

CI (low) −0.31007 −0.12284 −0.00809
CI (high) 0.0914 0.27338 0.38525

p 0.27299 0.44437 0.05481
FDR adjusted p 0.40949 0.53324 0.16443

design and with basic software architecture knowledge), which
of the approaches is actually in use. Another implication is
that the more technical approaches (Temporal Logic Pattern-
Based Semantic Constraint Representation and CEP-Based
Cause-Effect Semantic Constraint Representation), which sup-
port a straightforward transformation to formal languages
for automated verification, can be applied without lowering
the understanding of semantic constraints. This seems to
be a benefit as opposed to the Natural Language Semantic
Constraint Representation, which is harder to transform to
formal representations. Overall all representations facilitate a
high level of correct understanding of semantic architecture
constraints.

B. Threats to Validity

1) Threats to Internal Validity: We are not aware of any
disturbing history effects (environmental events). The short du-
ration of the experiment (max. 105 minutes) limits the chance
of maturation effects and experimental fatigue, and we did not
observe any such. Since each person is only tested once, we
can rule out learning effects. Instrumental bias is avoided by
the design of the experiment, which enforces equal scoring
of the different groups (i.e., it is ruled out that the researcher
scores the groups differently). The chance of selection bias
is limited due to the random assignment of participants to
groups. A potential threat to the internal validity, which we
cannot rule out, could be a cross-contamination between the
groups, because the participants share the same social group as
computer science students and interact outside of the research
process as well. We did not observe compensatory rivalry
or demoralization. All participants were compensated equally
by gaining points for the fulfillment of the course based on
their performance. The possibility of experimenter effects is
marginal because the experiment sessions were carried out
by (up to that time) uninvolved colleagues, and we are not
aware of any personal bias towards a specific outcome. Subject
effects are not expected since the experiment took place in the
usual context of the course, and the students were not being
made aware of taking part in an experiment explicitly.

2) Threats to External Validity: Carrying out the experi-
ment with students as proxies for novice software architect,
designer or developer must not necessarily be considered as a
large thread to validity, but it reduces the ability to make gen-
eralizations to a wider population without additional evidence.



That is, it would be interesting to repeat the experiment with
professionals. As the context of the current experiment are
software architecture patterns, it would be interesting to find
out, whether the results are generalizable to other settings, such
as compliance in business process management. Consequently,
repeating the study with business users in a business context
could provide evidence for a potential generalizability to
different contexts. The study investigates the understanding of
already defined semantic constraints, but it does not consider
the creation process of semantic constraints, so it is not
generalizable in that regard.

3) Threats to Construct Validity: In this study, we focus
on the specific construct understandability of semantic con-
straints. It is measured by the dependent variables correctness
and response time, which are commonly used to measure this
kind of construct (cf. [39, 40]). Consequently, we consider the
measurement procedure to be suitable for measuring the given
construct.

4) Threats to Content Validity: The given tasks comprise
only a subset of existing semantic constraint patterns (cf. [19]),
and other patterns are not investigated by the given experiment
as they were not necessary to create the tasks. Each task of
the experiment is related to an existing architectural pattern or
style. Testing other scenarios (e.g., highly complex or defec-
tive constraints) and using a more extensive set of semantic
constraint patterns would improve content validity.

5) Threats to Conclusion Validity: The statistical valid-
ity might be affected by the missing response time values,
which were substituted by the mean response times, but
the large number of observations is assumed to compensate
that potential effect. Retaining outliers might be a threat to
conclusion validity. However, the outliers appear to be valid
measurements. Thus, deleting them would pose a threat to
conclusion validity as well. We thoroughly investigated the
model assumptions of statistic tests and selected the test with
the greatest statistical power, which is beneficial to conclusion
validity.

VI. RELATED WORK

Graphically modeled semantic constraints are an alternative
to the tested representations, which are not investigated by this
experimental study. Dimech & Balasubramaniam [43] propose
an approach for the automated extraction of structural and
semantic constraints from UML diagrams. They state that the
lack of support for choice and iteration in sequence diagrams
limits their approach. Ganesan et al. [12] use colored Petri nets
to specific constraints for behavioral architecture compliance
checking at runtime. They report that constructing the Petri
nets is an error-prone iterative process because it is difficult
to precisely formalize the architecture through Petri nets.
Moreover, although targeting runtime, the approach focuses on
structural aspects (like other structural approaches, cf. [4, 44])
and neglects behavioral aspects. Awad et al. [45] propose a
visual language called BPMN-Q for compliance checking of
business processes with a transformation to temporal logic
for formal verification. Van der Aalst & Pesic [46] propose
a graphical language for defining service flows declaratively

with underlying formal representations in Linear Temporal
Logic (LTL). Both approaches are based on temporal logic
patterns, and therefore they are related to the studied temporal
logic pattern-based semantic architecture constraint represen-
tation. The presented study has a strong focus on different
(structured) textual representations as textual notations appear
to be a suitable approach for describing semantic architecture
constraints (cf. Völter [47]), but future extensions may con-
sider graphical or mixed representations as well.

The Grasp ADL [48] is proposed as a textual language for
describing architectures, which can be transformed to a graph
representation and mapped to the implementation by annota-
tions for runtime monitoring [7] and static checking [49] of
structural architecture erosion. Weinreich and Buchgeher [50]
propose to specify a reference architecture by a set of roles,
required as well as forbidden relationships, and a set of logical
constraints on roles and relationships. Caracciolo et al. [11]
propose a structured language consisting of natural language
elements such as ‘must’ and ‘cannot’, and transformations
to different evaluation tools. Miranda et al. [51] propose
a YAML-based language for the specification of structural
architecture constraints for Ruby called ArchRuby. In con-
trast, ArchJava [52] and Archface [53] directly combine and
seamlessly unify architecture definitions and program code
to prevent architecture drift. Mulo et al. [17] propose the
behavioral runtime checking of service oriented architectures
(SOA) by Complex Event Processing (CEP). The constraints
are specified in a structured language focusing on execution
order (i.e., parallel, in sequence, optionality), and they can be
automatically transformed to EPL for compliance checking at
runtime. Eichberg et al. use a logics-based language to specify
structural constraints [54]. To the best of our knowledge, a
dedicated evaluation of the understandability of the mentioned
languages is not available.

There also exist related studies regarding the evaluation
of constraint languages. Haisjackl et al. [55] conducted a
user experiment on the understandability of temporal logic-
based declarative models. They conclude that combinations
of semantic constraints are harder to understand than sin-
gle isolated constraints and that experience with imperative
modeling is not transferable to declarative modeling. Their
study does not compare different ways for defining semantic
constraints as the work presented in this paper does. Fahland et
al. [56] compare declarative and imperative process modeling
languages in terms of understanding on basis of the cognitive
dimensions framework (cf. Green & Petre [57]. They assume
that understanding process models is similar to understanding
programs (also cf. Gilmore & Green [58]). Hoisl et al. [40]
conducted a controlled experiment on three notations for defin-
ing scenario based model tests. The result of the experiment
indicates that a natural-language-based approach should be
preferred for scenario-based model tests. However, the validity
of the experiment suffers from small sample sizes and the lack
of hypothesis testing. Kühne et al. [59] report a controlled
experiment on the efficiency of communicating architecture
design decisions in which neither textual nor graphical repre-



sentations had a significant advantage. We are not aware of any
related studies that evaluate the understandability of semantic
architecture constraint representations as our work does.

VII. CONCLUSION AND FUTURE WORK

A. Summary

This paper reports a controlled experiment on the under-
standability of three representations for describing semantic
constraints for behavioral software architecture compliance.
In particular, the work focuses on architecture descriptions in
natural language, as often used for architecture documentation
today, and in two structured languages that are formally
grounded on established verification techniques (i.e., model
checking, automata-based runtime checking, and Complex
Event Processing). The experiment took place as part of
the “Software Architecture Lab” course in the summer term
2016 at the University of Vienna with 190 participants. The
descriptive statistics are slightly in favor of the Temporal Logic
Pattern-Based Semantic Constraint Representation, but the
inferential statistic analyses suggest that there is no difference
regarding understandability between the tested approaches.
Overall, there is a high level of correctness measured for all
of the tested representations.

B. Impact

The results of this controlled experiment suggest that all
tested representations are similar in terms of their under-
standability. The more technical representations for describing
semantic constraints (Temporal Logic Pattern-Based Semantic
Constraint Representation and CEP-Based Cause-Effect Se-
mantic Constraint Representation) enable an understandability
similar to descriptions in natural language, while having at the
same time the advantage of underlying formal representations
that can be directly used for automated verification. The results
of this study might impact the way semantic constraints are
documented. In this regard, the proposed structured language
representations, which enable a direct transformation to formal
languages for automated verification, could be a viable alter-
native to natural language descriptions, because such natural
language descriptions would require additional manual or
semi-automatic processing to a formal/technical language such
as LTL or EPL for automated verification.

C. Future Work

A potential limitation of this experiment is that mainly com-
mon semantic constraint patterns such as Global Response,
Global Precedence were necessary to create the tested seman-
tic constraints in the context of architectural design patterns.
On the one hand, it is realistic that these constraint patterns
occur predominantly, on the other hand, it would be interesting
to measure the understandability construct with a larger set
of semantic constraint patterns. Consequently, a controlled
experiment that involves a broader set of semantic constraint
patterns is an opportunity for future work. Moreover, not only
the understanding of existing semantic constraints, but also
the creation process must be evaluated. Other opportunities
for future work are comparisons of graphical versus textual

semantic constraint approaches, and the repetition of the ex-
periment in different settings (e.g., with different stakeholders
in the software development process or with professionals in
a business process management context). Future experiments
may also involve questionnaires that assess qualitative aspects.
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